9 research outputs found
Design of liposomes as drug delivery system for therapeutic applications
Liposomes are spherical vesicles consisting of one or more concentric phospholipid bilayers enclosing an aqueous core. Being both nontoxic and biodegradable, liposomes represent a powerful delivery system for several drugs. They have improved the therapeutic efficacy of drugs through stabilizing compounds, overcoming obstacles to cellular and tissue uptake and increasing drug biodistribution to target sites in vivo, while minimizing systemic toxicity. This review offers an overview of liposomes, thought the exploration of their key fundamentals. Initially, the main design aspects to obtain a successful liposomal formulation were addressed, following the techniques for liposome production and drug loading. Before application, liposomes required an extensive characterization to assurance in vitro and in vivo performance. Thus, several properties to characterize liposomes were explored, such as size, polydispersity index, zeta potential, shape, lamellarity, phase behavior, encapsulation efficiency, and in vitro drug release. Topics related with liposomal functionalization and effective targeting strategies were also addressed, as well as stability and some limitations of liposomes. Finally, this review intends to explore the current market liposomes used as a drug delivery system in different therapeutic applications.This work has received funding from the European Union Horizon 2020 research and innovation programme under grant agreement NMP-06-2015-683356 FOLSMART. This study was also supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/04469/2020 unit and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. Diana Guimaraes (SFRH/BD/140321/2018) hold a scholarship from FCT.info:eu-repo/semantics/publishedVersio
Cesarean Section Is Associated with Increased Peripheral and Central Adiposity in Young Adulthood: Cohort Study
BACKGROUND: Cesarean section (CS) has been associated with obesity, measured by body mass index (BMI), in some studies. It has been hypothesized that this association, if causal, might be explained by changes in gut microbiota. However, little is known about whether CS is also associated with increased adiposity as measured by indicators other than BMI. Objective: To assess the association between CS and indicators of peripheral and central adiposity in young adults. METHODS: The study was conducted on 2,063 young adults aged 23 to 25 years from the 1978/79Ribeirão Preto birth cohort, São Paulo, Brazil. CS was the independent variable. The anthropometric indicators of adiposity were: waist circumference (WC), waist-height ratio (WHtR), waist-hip ratio (WHR), tricipital skinfold (TSF), and subscapular skinfold (SSF). The association between CS and indicators of adiposity was investigated using a Poisson model, with robust adjustment of variance and calculation of incidence rate ratio (IRR) with 95% confidence interval (95%CI), and adjustment for birth variables. RESULTS: Follow-up rate was 31.8%. The CS rate was 32%. Prevalences of increased WC, WHtR, WHR were 32.1%, 33.0% and 15.2%, respectively. After adjustment for birth variables, CS was associated with increased risk of adiposity when compared to vaginal delivery: 1.22 (95%CI 1.07; 1.39) for WC, 1.25 (95%CI 1.10;1.42) for WHtR, 1.45 (95%CI 1.18;1.79) for WHR, 1.36 (95%CI 1.04;1.78) for TSF, and 1.43 (95%CI 1.08;1.91) for SSF. CONCLUSION: Subjects born by CS had a higher risk for increased peripheral and central adiposity during young adult age compared to those born by vaginal delivery. The association of CS with adiposity was consistently observed for all indicators and was robust after adjustment for a variety of early life confounders