34 research outputs found

    Studio del ruolo funzionale e caratterizzazione strutturale del cuprocomplesso TFF1-Cu

    Get PDF
    2009 - 2010The maintenance of gastrointestinal tissue integrity is physiologically essential in the presence of the persistent harassment of microbial flora and injurious agents. Even though the repair of the gastric epithelium may be modulated by several factors, the epithelial continuity also depends on a family of small peptides called trefoil factors (TFFs). The trefoil factors family comprises the gastric peptides pS2/TFF1, the spasmolytic peptide (SP)/TFF2 and the intestinal trefoil factor (ITF)/TFF3; they are characterized by a three looped domain, the “trefoil domain”, stabilized by three disulphide bridges. TFF1 and TFF3 also have a seventh cysteine that allows the formation of omo- and/or hetero-dimers. On the other hand TFF2 presents only a monomeric form, containing two trefoil domains in the same polypeptide chain. TFFs are small protease-resistant proteins that are abundantly produced by mucus-secreting cells of the gastrointestinal tract onto the mucosal surface. TFFs are essential in the protection of the mucosal epithelia against a wide range of biological threats, thus contributing to the mucosal repair. The signaling events that mediate the cellular responses elicited by TFFs are only partially understood. Moreover there are convincing evidence that TFFs do play an important role in tumorigenesis, even though their specific roles in cancer are still unclear. TFF1 expression is strongly induced after mucosal injury and it has been proposed that TFF1 functions as a gastric tumor suppressor gene. Several studies confirm that TFF1 expression is frequently lost in gastric cancer because of deletions, mutations or methylation of the TFF1 gene. Infection by Helicobacter pylori, a class 1 carcinogen according to WHO classification, is thought to promote stomach carcinogenesis through induction of aberrant DNA methylation. Samples from infected patients show lower expression of TFF1. Recent studies have also shown that there is a direct relationship between Helicobacter pylori and the dimeric form of the protein. In fact, it was demonstrated that the core oligosaccharide portion of H. pylori lipopolysaccharide (RF-LPS) is able to bind to TFF1. It also seems that the loss of TFF1 is an important event in shaping the NF-kB-mediated inflammatory response during the progression to gastric tumorigenesis, being TFF1 a negative regulator of NF-kB signalling. It is thus emerging a clear correlation between loss of TFF1, the development of inflammatory disease and the neoplastic process. Recent analyses made by our research group allowed us to point out the up-regulation of TFF1 gene expression in rats fed on copper deficient diets, and allowed us to find out the unexpected ability of TFF1 to bind copper ions. The presence of a cysteine surrounded by several negatively charged residues in the carboxy-terminus of the protein suggested the presence of a copper-binding site. Afterwards, it was shown that Cys58 and at least three Glu surrounding residues are essential to efficiently bind copper. Moreover, the incubation of the native peptide with copper salts increases the fraction of peptide omodimers produced by inter-molecular oxidation of Cys58 and disulphide bond formation. The Ph.D. research project was aimed at characterising the structure-function relationship of the TFF1-Cu complex. Briefly, we studied the influence of copper on known TFF1 biological activities and on its gene regulation, then we investigated its involvement in the TFF1 mediated mechanisms of Helicobacter pylori virulence and infection. A preliminary Real Time PCR quantitative analysis showed that copper deficiency positively modulates tff1 expression in an adenocarcinoma cell line (AGS), thus confirming our previous data obtained in vivo in copper deficient rat intestine. In order to map possible copper responsive elements in the proximal promoter sequence, we analysed the expression of a reporter gene (Luciferase) driven by deletion constructs of the tff1 gene promoter. AGS cells transfected with the deletion constructs allowed us to identify the upstream 5’ gene sequence -583/-435 as a promoter region sensitive to the changes of copper concentration. In fact, copper chelation treatments with bathocuproine disulfonate (BCS) were able to stimulate an increase of the promoter activity of the corresponding deletion construct. Following the sequence analysis (Transfac software) we focused our attention on a putative SP1 binding site identified in this region, whose binding ability was then confirmed by electrophoretic mobility shift assay (-561/-552). In agreemente with our in vitro results, it was also observed that copper favours the native TFF1 dimer formation in the culture medium of MCF-7 and HT29-MTX cells (a mucus-secreting clone obtained from the HT29 colon cancer cell line), thus confirming a possible role of the metal in the balance between the monomeric and the dimeric forms To evaluate the effect of copper-TFF1 interaction on the well known motogenic activity of the protein, we performed wound healing assays on an inducible clone of gastric cancer cells (AGS) able to overexpress the peptide (AGS-AC1). As expected, the overexpression of TFF1 stimulates an appreciable increase of cell migration, and copper chelation (BCS) undo the benefits of the increased peptide level. Our previous results showed that copper treatments decreased the amount of secreted protein in culture medium. Further experiments demonstrated that induced AGS-AC1 cells are able to store intracellularly higher amount of copper if compared to uninduced AGS-AC1 cells. This evidence suggests that TFF1 levels may also play a role also in the uptake/traffic of copper in this in vitro model. Finally, we studied the combined influence of TFF1 and copper in Helicobacter pylori infections. Our results demonstrate that Cu-TFF1 complex promotes H. pylori colonization of AGS cells. In fact, AGS-AC1 cells overexpressing TFF1 are more efficiently colonised by H. pylori wild-type (str. P12) if compared to uninduced cells. The presence of copper in a duplicate experiment further increases the colonization, as well as copper chelation by bathocuproine disulfonate (BCS) reduces the observed effect. The same result was obtained with H. pylori str. P12Δ479, an isogenic mutant expressing a truncated LPS core still able to bind to TFF1. On the other hand, H. pylori P12Δ1191, unable to bind TFF1, is not affected by copper levels in the culture medium. Parallel experiments were carried out on mucus secreting HT29-E12 goblet cells, to compare and/or confirm the results obtained in AGS-AC1. The results show that also in HT29-E12 cells the H. pylori colonization follows a similar trend, increasing when incubated in the presence of Cu and decreasing after BCS treatment. The present work contributed interesting results in the field of the biochemistry of the epithelia, in the wake of the research in progress in our laboratory aimed at studying the biological activities of the newly identified metalloprotein Cu-TFF1, whose properties are still poorly characterized. On the basis of the previous structural pieces of evidence we observed that the protein level and the balance of its oligomeric forms can be affected and regulated by copper ions. In turn, this delicate equilibrium is able to affect the integrity and the rheological properties of the epithelial barrier, thus representing a fine tuner, or an Achille’s heel, through which pathogenic microrganisms and deregulated proliferation of neoplastic cells may take advantage for their invasiveness. The role of copper in the TFFs biochemistry represents a new finding in the puzzling and versatile functions of this interesting peptide family, whose thorough comprehension still reserves many questions and surprises. [edited by author]IX n.s

    A reverse-engineering approach to dissect post-translational modulators of transcription factor's activity from transcriptional data.

    Get PDF
    BACKGROUND: Transcription factors (TFs) act downstream of the major signalling pathways functioning as master regulators of cell fate. Their activity is tightly regulated at the transcriptional, post-transcriptional and post-translational level. Proteins modifying TF activity are not easily identified by experimental high-throughput methods. RESULTS: We developed a computational strategy, called Differential Multi-Information (DMI), to infer post-translational modulators of a transcription factor from a compendium of gene expression profiles (GEPs). DMI is built on the hypothesis that the modulator of a TF (i.e. kinase/phosphatases), when expressed in the cell, will cause the TF target genes to be co-expressed. On the contrary, when the modulator is not expressed, the TF will be inactive resulting in a loss of co-regulation across its target genes. DMI detects the occurrence of changes in target gene co-regulation for each candidate modulator, using a measure called Multi-Information. We validated the DMI approach on a compendium of 5,372 GEPs showing its predictive ability in correctly identifying kinases regulating the activity of 14 different transcription factors. CONCLUSIONS: DMI can be used in combination with experimental approaches as high-throughput screening to efficiently improve both pathway and target discovery. An on-line web-tool enabling the user to use DMI to identify post-transcriptional modulators of a transcription factor of interest che be found at http://dmi.tigem.it

    Blocking Zika virus vertical transmission.

    Get PDF
    The outbreak of the Zika virus (ZIKV) has been associated with increased incidence of congenital malformations. Although recent efforts have focused on vaccine development, treatments for infected individuals are needed urgently. Sofosbuvir (SOF), an FDA-approved nucleotide analog inhibitor of the Hepatitis C (HCV) RNA-dependent RNA polymerase (RdRp) was recently shown to be protective against ZIKV both in vitro and in vivo. Here, we show that SOF protected human neural progenitor cells (NPC) and 3D neurospheres from ZIKV infection-mediated cell death and importantly restored the antiviral immune response in NPCs. In vivo, SOF treatment post-infection (p.i.) decreased viral burden in an immunodeficient mouse model. Finally, we show for the first time that acute SOF treatment of pregnant dams p.i. was well-tolerated and prevented vertical transmission of the virus to the fetus. Taken together, our data confirmed SOF-mediated sparing of human neural cell types from ZIKV-mediated cell death in vitro and reduced viral burden in vivo in animal models of chronic infection and vertical transmission, strengthening the growing body of evidence for SOF anti-ZIKV activity

    Multi-center screening of the Pathogen Box collection for schistosomiasis drug discovery

    Get PDF
    Over the past five years, as a public service to encourage and accelerate drug discovery for diseases of poverty, the Medicines for Malaria Venture (MMV) has released box sets of 400 compounds named the Malaria, Pathogen and Stasis Boxes. Here, we screened the Pathogen Box against the post-infective larvae (schistosomula) of Schistosoma mansoni using assays particular to the three contributing institutions, namely, the University of California San Diego (UCSD) in the USA, the Swiss Tropical and Public Health Institute (Swiss TPH) in Switzerland, and the Fundação Oswaldo Cruz (FIOCRUZ) in Brazil. With the same set of compounds, the goal was to determine the degree of inter-assay variability and identify a core set of active compounds common to all three assays. New drugs for schistosomiasis would be welcome given that current treatment and control strategies rely on chemotherapy with just one drug, praziquantel.; Both the UCSD and Swiss TPH assays utilize daily observational scoring methodologies over 72 h, whereas the FIOCRUZ assay employs XTT (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide) at 72 h to measure viability as a function of NAD; +; /NADH redox state. Raw and transformed data arising from each assay were assembled for comparative analysis.; For the UCSD and Swiss TPH assays, there was strong concordance of at least 87% in identifying active and inactive compounds on one or more of the three days. When all three assays were compared at 72 h, concordance remained a robust 74%. Further, robust Pearson's correlations (0.48-0.68) were measured between the assays. Of those actives at 72 h, the UCSD, Swiss TPH and FIOCRUZ assays identified 86, 103 and 66 compounds, respectively, of which 35 were common. Assay idiosyncrasies included the identification of unique compounds, the differential ability to identify known antischistosomal compounds and the concept that compounds of interest might include those that increase metabolic activity above baseline.; The inter-assay data generated were in good agreement, including with previously reported data. A common set of antischistosomal molecules for further exploration has been identified

    Repurposing of tamoxifen ameliorates CLN3 and CLN7 disease phenotype

    Get PDF
    Batten diseases (BDs) are a group of lysosomal storage disorders characterized by seizure, visual loss, and cognitive and motor deterioration. We discovered increased levels of globotriaosylceramide (Gb3) in cellular and murine models of CLN3 and CLN7 diseases and used fluorescent-conjugated bacterial toxins to label Gb3 to develop a cell-based high content imaging (HCI) screening assay for the repurposing of FDA-approved compounds able to reduce this accumulation within BD cells. We found that tamoxifen reduced the lysosomal accumulation of Gb3 in CLN3 and CLN7 cell models, including neuronal progenitor cells (NPCs) from CLN7 patient-derived induced pluripotent stem cells (iPSC). Here, tamoxifen exerts its action through a mechanism that involves activation of the transcription factor EB (TFEB), a master gene of lysosomal function and autophagy. In vivo administration of tamoxifen to the CLN7Δex2 mouse model reduced the accumulation of Gb3 and SCMAS, decreased neuroinflammation, and improved motor coordination. These data strongly suggest that tamoxifen may be a suitable drug to treat some types of Batten disease.This work was funded by the European Union’s Horizon 2020 research and innovation programme (BATCure, grant No. 666918 to DLM, JPB, SEM, TB and SS). JPB is funded by the Agencia Estatal de Investigación (PID2019-105699RB-I00/ AEI / 10.13039/501100011033 and RED2018-102576-T), Plan Nacional sobre Drogas (2020I028), Junta de Castilla y León (Escalera de Excelencia CLU-2017-03), Ayudas Equipos Investigación Biomedicina 2017 Fundación BBVA and Fundación Ramón Areces. SS was funded by a grant from the Mila’s Miracle Foundation. TB was supported by German Research Council (DFG) grant FOR2625. SM benefits from MRC funding to the MRC Laboratory for Molecular Cell Biology University Unit at UCL (award code MC_U12266B) towards laboratory and office space. We acknowledge Marcella Cesana for providing the TFEB virus. Graphical abstract was created using BioRender.com

    Identification of p38 MAPK and JNK as New Targets for Correction of Wilson Disease-Causing ATP7B Mutants

    Get PDF
    Wilson disease (WD) is an autosomal recessive disorder that is caused by the toxic accumulation of copper (Cu) in the liver. The ATP7B gene, which is mutated in WD, encodes a multitransmembrane domain adenosine triphosphatase that traffics from the trans-Golgi network to the canalicular area of hepatocytes, where it facilitates excretion of excess Cu into the bile. Several ATP7B mutations, including H1069Q and R778L that are two of the most frequent variants, result in protein products, which, although still functional, remain in the endoplasmic reticulum. Thus, they fail to reach Cu excretion sites, resulting in the toxic buildup of Cu in the liver of WD patients. Therefore, correcting the location of these mutants by leading them to the appropriate functional sites in the cell should restore Cu excretion and would be beneficial to help large cohorts of WD patients. However, molecular targets for correction of endoplasmic reticulum-retained ATP7B mutants remain elusive. Here, we show that expression of the most frequent ATP7B mutant, H1069Q, activates p38 and c-Jun N-terminal kinase signaling pathways, which favor the rapid degradation of the mutant. Suppression of these pathways with RNA interference or specific chemical inhibitors results in the substantial rescue of ATP7B(H1069Q) (as well as that of several other WD-causing mutants) from the endoplasmic reticulum to the trans-Golgi network compartment, in recovery of its Cu-dependent trafficking, and in reduction of intracellular Cu levels. Conclusion: Our findings indicate p38 and c-Jun N-terminal kinase as intriguing targets for correction of WD-causing mutants and, hence, as potential candidates, which could be evaluated for the development of novel therapeutic strategies to combat WD
    corecore