11 research outputs found

    SOPHIE velocimetry of Kepler transit candidates XII. KOI-1257 b: a highly eccentric three-month period transiting exoplanet

    Full text link
    In this paper we report a new transiting warm giant planet: KOI-1257 b. It was first detected in photometry as a planet-candidate by the Kepler{\it Kepler} space telescope and then validated thanks to a radial velocity follow-up with the SOPHIE spectrograph. It orbits its host star with a period of 86.647661 d ±\pm 3 s and a high eccentricity of 0.772 ±\pm 0.045. The planet transits the main star of a metal-rich, relatively old binary system with stars of mass of 0.99 ±\pm 0.05 Msun and 0.70 ± \pm 0.07 Msun for the primary and secondary, respectively. This binary system is constrained thanks to a self-consistent modelling of the Kepler{\it Kepler} transit light curve, the SOPHIE radial velocities, line bisector and full-width half maximum (FWHM) variations, and the spectral energy distribution. However, future observations are needed to confirm it. The PASTIS fully-Bayesian software was used to validate the nature of the planet and to determine which star of the binary system is the transit host. By accounting for the dilution from the binary both in photometry and in radial velocity, we find that the planet has a mass of 1.45 ± \pm 0.35 Mjup, and a radius of 0.94 ± \pm 0.12 Rjup, and thus a bulk density of 2.1 ± \pm 1.2 g.cm3^{-3}. The planet has an equilibrium temperature of 511 ±\pm 50 K, making it one of the few known members of the warm-jupiter population. The HARPS-N spectrograph was also used to observe a transit of KOI-1257 b, simultaneously with a joint amateur and professional photometric follow-up, with the aim of constraining the orbital obliquity of the planet. However, the Rossiter-McLaughlin effect was not clearly detected, resulting in poor constraints on the orbital obliquity of the planet.Comment: 39 pages, 17 figures, accepted for publication in Astronomy & Astrophysic

    VLT/SPHERE imaging survey of the largest main-belt asteroids: Final results and synthesis

    Get PDF
    Context. Until recently, the 3D shape, and therefore density (when combining the volume estimate with available mass estimates), and surface topography of the vast majority of the largest (D ≥ 100 km) main-belt asteroids have remained poorly constrained. The improved capabilities of the SPHERE/ZIMPOL instrument have opened new doors into ground-based asteroid exploration. Aims. To constrain the formation and evolution of a representative sample of large asteroids, we conducted a high-angular-resolution imaging survey of 42 large main-belt asteroids with VLT/SPHERE/ZIMPOL. Our asteroid sample comprises 39 bodies with D ≥ 100 km and in particular most D ≥ 200 km main-belt asteroids (20/23). Furthermore, it nicely reflects the compositional diversity present in the main belt as the sampled bodies belong to the following taxonomic classes: A, B, C, Ch/Cgh, E/M/X, K, P/T, S, and V. Methods. The SPHERE/ZIMPOL images were first used to reconstruct the 3D shape of all targets with both the ADAM and MPCD reconstruction methods. We subsequently performed a detailed shape analysis and constrained the density of each target using available mass estimates including our own mass estimates in the case of multiple systems. Results. The analysis of the reconstructed shapes allowed us to identify two families of objects as a function of their diameters, namely “spherical” and “elongated” bodies. A difference in rotation period appears to be the main origin of this bimodality. In addition, all but one object (216 Kleopatra) are located along the Maclaurin sequence with large volatile-rich bodies being the closest to the latter. Our results further reveal that the primaries of most multiple systems possess a rotation period of shorter than 6 h and an elongated shape (c/a ≤ 0.65). Densities in our sample range from ~1.3 g cm−3 (87 Sylvia) to ~4.3 g cm−3 (22 Kalliope). Furthermore, the density distribution appears to be strongly bimodal with volatile-poor (ρ ≥ 2.7 g cm−3) and volatile-rich (ρ ≤ 2.2 g cm−3) bodies. Finally, our survey along with previous observations provides evidence in support of the possibility that some C-complex bodies could be intrinsically related to IDP-like P- and D-type asteroids, representing different layers of a same body (C: core; P/D: outer shell). We therefore propose that P/ D-types and some C-types may have the same origin in the primordial trans-Neptunian disk

    VizieR Online Data Catalog: KOI-1257 photometric and velocimetric data (Santerne+, 2014)

    No full text
    VizieR On-line Data Catalog: J/A+A/571/A37In this paper we report a new transiting warm giant planet: KOI-1257b. It was first detected in photometry as a planet-candidate by the Kepler space telescope and then validated thanks to a radial velocity follow-up with the SOPHIE spectrograph. It orbits its host star with a period of 86.647661d+/-3s and a high eccentricity of 0.772+/-0.045. The planet transits the main star of a metal-rich, relatively old binary system with stars of mass of 0.99+/-0.05M⊙ and 0.70+/-0.07M⊙ for the primary and secondary, respectively. This binary system is constrained thanks to a self-consistent modelling of the Kepler transit light curve, the SOPHIE radial velocities, line bisector and full-width half maximum (FWHM) variations, and the spectral energy distribution. However, future observations are needed to confirm it. The PASTIS fully-Bayesian software was used to validate the nature of the planet and to determine which star of the binary system is the transit host. By accounting for the dilution from the binary both in photometry and in radial velocity, we find that the planet has a mass of 1.45+/-0.35Mjup, and a radius of 0.94+/-0.12Rjup, and thus a bulk density of 2.1+/-1.2g/cm3. The planet has an equilibrium temperature of 511+/-50K, making it one of the few known members of the warm-Jupiter population. The HARPS-N spectrograph was also used to observe a transit of KOI-1257b, simultaneously with a joint amateur and professional photometric follow-up, with the aim of constraining the orbital obliquity of the planet. However, the Rossiter-McLaughlin effect was not clearly detected, resulting in poor constraints on the orbital obliquity of the planet. (3 data files)

    VizieR Online Data Catalog: KOI-1257 photometric and velocimetric data (Santerne+, 2014)

    No full text
    VizieR On-line Data Catalog: J/A+A/571/A37In this paper we report a new transiting warm giant planet: KOI-1257b. It was first detected in photometry as a planet-candidate by the Kepler space telescope and then validated thanks to a radial velocity follow-up with the SOPHIE spectrograph. It orbits its host star with a period of 86.647661d+/-3s and a high eccentricity of 0.772+/-0.045. The planet transits the main star of a metal-rich, relatively old binary system with stars of mass of 0.99+/-0.05M⊙ and 0.70+/-0.07M⊙ for the primary and secondary, respectively. This binary system is constrained thanks to a self-consistent modelling of the Kepler transit light curve, the SOPHIE radial velocities, line bisector and full-width half maximum (FWHM) variations, and the spectral energy distribution. However, future observations are needed to confirm it. The PASTIS fully-Bayesian software was used to validate the nature of the planet and to determine which star of the binary system is the transit host. By accounting for the dilution from the binary both in photometry and in radial velocity, we find that the planet has a mass of 1.45+/-0.35Mjup, and a radius of 0.94+/-0.12Rjup, and thus a bulk density of 2.1+/-1.2g/cm3. The planet has an equilibrium temperature of 511+/-50K, making it one of the few known members of the warm-Jupiter population. The HARPS-N spectrograph was also used to observe a transit of KOI-1257b, simultaneously with a joint amateur and professional photometric follow-up, with the aim of constraining the orbital obliquity of the planet. However, the Rossiter-McLaughlin effect was not clearly detected, resulting in poor constraints on the orbital obliquity of the planet. (3 data files)

    Original Research By Young Twinkle Students (ORBYTS): Ephemeris Refinement of Transiting Exoplanets

    Get PDF
    We report follow-up observations of transiting exoplanets that have either large uncertainties (>10 minutes) in their transit times or have not been observed for over three years. A fully robotic ground-based telescope network, observations from citizen astronomers and data from TESS have been used to study eight planets, refining their ephemeris and orbital data. Such follow-up observations are key for ensuring accurate transit times for upcoming ground and space-based telescopes which may seek to characterise the atmospheres of these planets. We find deviations from the expected transit time for all planets, with transits occurring outside the 1 sigma uncertainties for seven planets. Using the newly acquired observations, we subsequently refine their periods and reduce the current predicted ephemeris uncertainties to 0.28 - 4.01 minutes. A significant portion of this work has been completed by students at two high schools in London as part of the Original Research By Young Twinkle Students (ORBYTS) programme

    New and updated convex shape models of asteroids based on optical data from a large collaboration network

    No full text
    International audienc
    corecore