84 research outputs found

    Snow Processes in Mountain Forests: Interception Modeling for Coarse-Scale Applications

    Get PDF
    Snow interception by the forest canopy controls the spatial heterogeneity of subcanopy snow accumulation leading to significant differences between forested and nonforested areas at a variety of scales. Snow intercepted by the forest canopy can also drastically change the surface albedo. As such, accurately modeling snow interception is of importance for various model applications such as hydrological, weather, and climate predictions. Due to difficulties in the direct measurements of snow interception, previous empirical snow interception models were developed at just the point scale. The lack of spatially extensive data sets has hindered the validation of snow interception models in different snow climates, forest types, and at various spatial scales and has reduced the accurate representation of snow interception in coarse-scale models. We present two novel empirical models for the spatial mean and one for the standard deviation of snow interception derived from an extensive snow interception data set collected in an evergreen coniferous forest in the Swiss Alps. Besides open-site snowfall, subgrid model input parameters include the standard deviation of the DSM (digital surface model) and/or the sky view factor, both of which can be easily precomputed. Validation of both models was performed with snow interception data sets acquired in geographically different locations under disparate weather conditions. Snow interception data sets from the Rocky Mountains, US, and the French Alps compared well to the modeled snow interception with a normalized root mean square error (NRMSE) for the spatial mean of ≤10 % for both models and NRMSE of the standard deviation of ≤13 %. Compared to a previous model for the spatial mean interception of snow water equivalent, the presented models show improved model performances. Our results indicate that the proposed snow interception models can be applied in coarse land surface model grid cells provided that a sufficiently fine-scale DSM is available to derive subgrid forest parameters

    Efficacy and safety of NI-0101, an anti-toll-like receptor 4 monoclonal antibody, in patients with rheumatoid arthritis after inadequate response to methotrexate: a phase II study

    Get PDF
    Objectives Anti-citrullinated protein antibodies (ACPAs) form immune complexes with citrullinated proteins binding toll-like receptor (TLR) 4, which has been proposed as a mediator of rheumatoid arthritis (RA). NI-0101 is a first-in-class humanised monoclonal antibody blocking TLR4, as confirmed by inhibition of in vivo lipopolysaccharide-induced cytokine release in healthy volunteers. This study was design to confirm preclinical investigations supporting a biomarker-driven approach for treatment of patients with RA who present positive for these immune complexes. Methods Placebo-controlled, double-blind, randomised (2:1) trial of the tolerability and efficacy of NI-0101 (5 mg/kg, every 2 weeks for 12 weeks) versus placebo in ACPA-positive RA patients with inadequate response to methotrexate. Efficacy measures included Disease Activity Score (28-joint count) with C reactive protein (DAS28-CRP), European League Against Rheumatism (EULAR) good and moderate responses, and American College of Rheumatology (ACR) 20, ACR50 and ACR70 responses. Subgroup analyses defined on biomarkers were conducted. Pharmacokinetics, pharmacodynamics and safety were reported. Results 90 patients were randomised (NI-0101 (61) and placebo (29)); 86 completed the study. No significant between-group difference was observed for any of the efficacy endpoints. Subgroup analyses using baseline parameters as covariants did not reveal any population responding to NI-0101. Treatment-emergent adverse events occurred in 51.7% of patients who received placebo versus 52.5% for NI-0101. Conclusions We demonstrate for the first time that in RA, a human immune-mediated inflammatory disease, blocking the TLR4 pathway alone does not improve disease parameters. Successful targeting of innate immune pathways in RA may require broader and/or earlier inhibitory approaches

    Snow accumulation and ablation measurements in a midlatitude mountain coniferous forest (Col de Porte, France, 1325 m altitude): the Snow Under Forest (SnoUF) field campaign data set

    Get PDF
    Forests strongly modify the accumulation, metamorphism and melting of snow in midlatitude and high-latitude regions. Recently, snow routines in hydrological and land surface models were improved to incorporate more accurate representations of forest snow processes, but model intercomparison projects have identified deficiencies, partly due to incomplete knowledge of the processes controlling snow cover in forests. The Snow Under Forest (SnoUF) project was initiated to enhance knowledge of the complex interactions between snow and vegetation. Two field campaigns, during the winters 2016–2017 and 2017–2018, were conducted in a coniferous forest bordering the snow study at Col de Porte (1325 m a.s.l., French Alps) to document the snow accumulation and ablation processes. This paper presents the field site, the instrumentation and the collection and postprocessing methods. The observations include distributed forest characteristics (tree inventory, lidar measurements of forest structure, subcanopy hemispherical photographs), meteorology (automatic weather station and an array of radiometers), snow cover and depth (snow pole transect and laser scan) and snow interception by the canopy during precipitation events. The weather station installed under dense canopy during the first campaign has been maintained since then and has provided continuous measurements throughout the year since 2018. Data are publicly available from the repository of the Observatoire des Sciences de l'Univers de Grenoble (OSUG) data center at https://doi.org/10.17178/SNOUF.2022 (Sicart et al., 2022).</p

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.

    Get PDF
    RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≥60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    INTERACTIONS PLAQUETTES-COLLAGENE. MISE EN EVIDENCE D'UNE NOUVEAU RECEPTEUR SPECIFIQUE DU COLLAGENE DE TYPE III

    No full text
    PARIS7-Bibliothèque centrale (751132105) / SudocSudocFranceF
    corecore