5 research outputs found

    Current threats faced by Neotropical parrot populations

    No full text
    Berkunsky I, Quillfeldt P, Brightsmith DJ, et al. Current threats faced by Neotropical parrot populations. Biological Conservation. 2017;214:278-287.Psittaciformes (parrots, cockatoos) are among the most endangered birds, with 31% of Neotropical species under threat. The drivers of this situation appear to be manifold and mainly of anthropogenic origin. However, this assessment is based on the last extensive consultation about the conservation situation of parrots carried out in the 1990s. Given the rapid development of anthropogenic threats, updated data are needed to strategize conservation actions. Using a population approach, we addressed this need through a wide-ranging consultation involving biologists, wildlife managers, government agencies and non-governmental conservation organizations. We gathered up-to-date information on threats affecting 192 populations of 96 Neotropical parrot species across 21 countries. Moreover, we investigated associations among current threats and population trends. Many populations were affected by multiple threats. Agriculture, Capture for the Pet Trade, Logging, each of them affected > 55% of the populations, suggesting a higher degree of risk than previously thought. In contrast to previous studies at the species level, our study showed that the threat most closely associated with decreasing population trends is now Capture for the local Pet Trade. Other threats associated with decreasing populations include Small-holder Farming, Rural Population Pressure, Nest Destruction by Poachers, Agro-industry Grazing, Small-holder Grazing, and Capture for the international Pet Trade. Conservation actions have been implemented on < 20% of populations. Our results highlight the importance of a population-level approach in revealing the extent of threats to wild populations. It is critical to increase the scope of conservation actions to reduce the capture of wild parrots for pets

    Global, Regional, And National Consumption Of Sugar-Sweetened Beverages, Fruit Juices, And Milk: A Systematic Assessment Of Beverage Intake In 187 Countries

    Get PDF
    Scopu

    Correction to: Impact of nonoptimal intakes of saturated, polyunsaturated, and trans fat on global burdens of coronary heart disease. [J Am Heart Assoc. (2016) 5, e002891.] Doi:10.1161/JAHA.115.002891.

    No full text

    Correction to: Impact of nonoptimal intakes of saturated, polyunsaturated, and trans fat on global burdens of coronary heart disease. [J Am Heart Assoc. (2016) 5, e002891.] Doi:10.1161/JAHA.115.002891.

    No full text
    In the article by Wang et al, &quot;Impact of Nonoptimal Intakes of Saturated, Polyunsaturated, and Trans Fat on Global Burdens of Coronary Heart Disease,&quot; which published online January 20, 2016, and appeared in the January 2016 issue of the journal (J Am Heart Assoc. 2016;5:e002891 doi:10.1161/ JAHA.115.002891), the full list of the Global Burden of Diseases Nutrition and Chronic Diseases Expert Group (NutriCoDE) group were erroneously listed as authors in the HTML version of the article. The publisher regrets the error. The online version of the article has been updated and is available at http://jaha.ahajournals.org/content/5/1/ e002891. © 2016 The Authors

    Impact of nonoptimal intakes of saturated, polyunsaturated, and trans fat on global burdens of coronary heart disease

    No full text
    Background: Saturated fat (SFA), x-6 (n-6) polyunsaturated fat (PUFA), and trans fat (TFA) influence risk of coronary heart disease (CHD), but attributable CHD mortalities by country, age, sex, and time are unclear. Methods and Results: National intakes of SFA, n-6 PUFA, and TFA were estimated using a Bayesian hierarchical model based on country-specific dietary surveys; food availability data; and, for TFA, industry reports on fats/oils and packaged foods. Etiologic effects of dietary fats on CHD mortality were derived from meta-analyses of prospective cohorts and CHD mortality rates from the 2010 Global Burden of Diseases study. Absolute and proportional attributable CHD mortality were computed using a comparative risk assessment framework. In 2010, nonoptimal intakes of n-6 PUFA, SFA, and TFA were estimated to result in 711 800 (95% uncertainty interval [UI] 680 700-745 000), 250 900 (95% UI 236 900-265 800), and 537 200 (95% UI 517 600-557 000) CHD deaths per year worldwide, accounting for 10.3% (95% UI 9.9%-10.6%), 3.6%, (95% UI 3.5%-3.6%) and 7.7% (95% UI 7.6%-7.9%) of global CHD mortality. Tropical oil-consuming countries were estimated to have the highest proportional n-6 PUFA- and SFAattributable CHD mortality, whereas Egypt, Pakistan, and Canada were estimated to have the highest proportional TFA-attributable CHD mortality. From 1990 to 2010 globally, the estimated proportional CHD mortality decreased by 9% for insufficient n-6 PUFA and by 21% for higher SFA, whereas it increased by 4% for higher TFA, with the latter driven by increases in low- and middle-income countries. Conclusions: Nonoptimal intakes of n-6 PUFA, TFA, and SFA each contribute to significant estimated CHD mortality, with important heterogeneity across countries that informs nation-specific clinical, public health, and policy priorities. © 2016 The Authors
    corecore