37 research outputs found

    Confronting the nucleonic hypothesis with current neutron star observations from GW170817 and PSR J0740+6620

    Full text link
    The nuclear matter equation of state is relatively well constrained at sub-saturation densities thanks to the knowledge from nuclear physics. However, studying its behavior at supra-saturation densities is a challenging task. Fortunately, the extraordinary progress recently made in observations of neutron stars and neutron star mergers has provided us with unique opportunities to unfold the properties of dense matter. Under the assumption that nucleons are the only constituents of neutron star cores, we perform a Bayesian inference using the so-called meta-modeling technique with a nuclear-physics-informed prior. The latest information from the GW170817 event by the LIGO-Virgo Collaboration (LVC) and from the radius measurement of the heaviest known neutron star PSR J0740+6620 by the Neutron Star Interior Composition Explorer (NICER) telescope and X-ray Multi-Mirror (XMM-Newton) are taken into account as likelihoods in the analysis. The impacts of different constraints on the equation of state as well as on the predictions of neutron star properties are discussed. The obtained posterior reveals that all the current observations are fully compatible with the nucleonic hypothesis. Strong disagreements between our results with future data can be identified as a signal for the existence of exotic degrees of freedom.Comment: Contribution to the "Journees de Rencontre des Jeunes Chercheurs (JRJC) 2021" proceeding

    Generalised description of Neutron Star matter with nucleonic Relativistic Density Functional

    Full text link
    In this work, we propose a meta-modelling technique to nuclear matter on the basis of a relativistic density functional with density-dependent couplings. Identical density dependence for the couplings both in the isoscalar and isovector sectors is employed. We vary the coupling parameters of the model to capture the uncertainties of the empirical nuclear matter parameters at saturation. Then, we construct a large ensemble of unified equations of state in a consistent manner both for clusterized and uniform matter in β\beta-equilibrium at zero temperature. Finally, we calculate neutron star properties to check the consistency with astrophysical observations within a Bayesian framework. Out of the different sets of astrophysical data employed, constraint on tidal deformability from the GW170817 event was found to be the most stringent in the posteriors of different neutron star properties explored in the present study. We demonstrate in detail the impact of the isovector incompressibility (KsymK_{sym}) on high-density matter that leads to a considerable variation in the composition of neutron star matter. A couple of selected models with extreme values of KsymK_{sym}, which satisfy various modern nuclear physics and neutron star astrophysics constraints, are uploaded in the \textsc{CompOSE} \cite{Typel:2013rza} database for use by the community

    Mg:TiO2 alloy thin films based MOS capacitors grown on GaAs substrates

    Get PDF
    Electron beam evaporation technique is employed to synthesise TiO2, Mg0.1Ti0.9O2 and Mg0.2Ti0.8O2 thin films (TFs) grown on (100) n-type GaAs substrates. Field emission gun-scanning electron microscope (FEG-SEM) results show that the TFs have a thickness of ~ 225 nm. The non- contact atomic force microscopy (NC-AFM) images shows the pore volume of the TiO2, Mg0.1Ti0.9O2 and Mg0.2Ti0.8O2 TFs enhanced gradually. UV-Vis absorption measurements are performed on the samples to determine the main bandgap and defect level transition of the material. A unique modified Urbach theoretical model has been introduced to simulate the experimental absorption spectrum. The main bandgap energy of the TiO2, Mg0.1Ti0.9O2 and Mg0.2Ti0.8O2 samples are calculated to be ~ 3.45 eV, 3.85 eV and 4.30 eV respectively. A gradual enhancement in main bandgap transition probability and decrease in defect level transition of the material has been observed with enhanced incorporation of Mg into the TiO2 host material. X-ray diffraction (XRD) is performed, which shows a continuous change in lattice constant of TiO2 with Mg. Current (I)-voltage (V) characteristics of the TiO2, Mg0.1Ti0.9O2 and Mg0.2Ti0.8O2 Schottky devices revealed that the leakage current at -1 V was 1.28×10-6 A, 1.46×10-9 A and 2.44×10-10 A respectively. Capacitance (C) – voltage (V) measurements are performed on the devices at different frequencies. A theoretical simulation has been adopted by amending the delta depletion model at 1 MHz. The dielectric constant and the flat band voltage of the TiO2, Mg0.1Ti0.9O2 and Mg0.2Ti0.8O2 devices are found to be 100, 120 and 160 and 16.1 V, 14.7 V and 9.7 V respectively. Hill-Coleman’s method shows a gradual enhancement of the density of interface states (Dit) with Mg concentration. The calculated Dit value of the TiO2, Mg0.1Ti0.9O2 and Mg0.2Ti0.8O2 TF devices are ~ 6.16×1010 eV-1 cm-2, 6.44×1010 eV-1 cm-2 and 1.11×1011 eV-1 cm-2 respectively. The observed C-V hysteresis confirms an enhancement in the charge retention into the film with increasing Mg concentration, which in turn improves the memory window (MW) from ~ 0.36 V (at ±7 V) to ~ 0.67 V (at ±7 V) and ~ 0.87 V (at ±10 V) to ~ 1.0 V (at ±10 V) with sweeping voltage

    Science with the Einstein Telescope: a comparison of different designs

    Get PDF
    The Einstein Telescope (ET), the European project for a third-generation gravitational-wave detector, has a reference configuration based on a triangular shape consisting of three nested detectors with 10 km arms, where in each arm there is a `xylophone' configuration made of an interferometer tuned toward high frequencies, and an interferometer tuned toward low frequencies and working at cryogenic temperature. Here, we examine the scientific perspectives under possible variations of this reference design. We perform a detailed evaluation of the science case for a single triangular geometry observatory, and we compare it with the results obtained for a network of two L-shaped detectors (either parallel or misaligned) located in Europe, considering different choices of arm-length for both the triangle and the 2L geometries. We also study how the science output changes in the absence of the low-frequency instrument, both for the triangle and the 2L configurations. We examine a broad class of simple `metrics' that quantify the science output, related to compact binary coalescences, multi-messenger astronomy and stochastic backgrounds, and we then examine the impact of different detector designs on a more specific set of scientific objectives.Comment: 197 pages, 72 figure

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions

    Density dependence of symmetry energy and neutron skin thickness revisited using relativistic mean field models with nonlinear couplings

    No full text
    International audienceThe correlation between neutron skin-thickness of a nucleus with neutron excess and density slope parameter of symmetry energy is assessed as a function of density using relativistic mean-field models containing nonlinear couplings among different mesons. Models with larger skin were found to probe the density slope parameter even at suprasaturation densities, whereas models with smaller skin were observed to be sensitive only at specific subsaturation density, connected to the average density of nuclei. Possible reasons behind this density dependence are explored systematically. These results might be model specific, which need to be reassessed in other types of interactions existing in the literature. Nevertheless, extrapolating the predictions at high densities from models, which are optimized by data at saturation or subsaturation densities, needs to be handled with care

    Nucleonic metamodelling in light of multimessenger, PREX-II and CREX data

    No full text
    The need of reconciling our understanding of the behavior of hadronic matter across a wide range of densities, especially at the time when data from multimessenger observations and novel experimental facilities are flooding in, has provided new challenges to the nuclear models. Particularly, the density dependence of the isovector channel of the nuclear energy functionals seems hard to pin down if experiments like PREX-II (or PREX) and CREX are required to be taken on the same footing. We put to test this anomaly in a semi-agnostic modelling technique, by performing a full Bayesian analysis of static properties of neutron stars, together with global properties of nuclei as binding energy, charge radii and neutron skin calculated at the semi-classical level. Our results show that the interplay between bulk and surface properties, and the importance of high order empirical parameters that effectively decouple the subsaturation and the supersaturation density regime, might partially explain the tension between the different measurements and observations. If the surface behaviors, however, are decoupled from the bulk properties, we found a rather harmonious situation among experimental and observational data

    Nucleonic metamodelling in light of multimessenger, PREX-II and CREX data

    No full text
    The need of reconciling our understanding of the behavior of hadronic matter across a wide range of densities, especially at the time when data from multimessenger observations and novel experimental facilities are flooding in, has provided new challenges to the nuclear models. Particularly, the density dependence of the isovector channel of the nuclear energy functionals seems hard to pin down if experiments like PREX-II (or PREX) and CREX are required to be taken on the same footing. We put to test this anomaly in a semi-agnostic modelling technique, by performing a full Bayesian analysis of static properties of neutron stars, together with global properties of nuclei as binding energy, charge radii and neutron skin calculated at the semi-classical level. Our results show that the interplay between bulk and surface properties, and the importance of high order empirical parameters that effectively decouple the subsaturation and the supersaturation density regime, might partially explain the tension between the different measurements and observations. If the surface behaviors, however, are decoupled from the bulk properties, we found a rather harmonious situation among experimental and observational data
    corecore