17 research outputs found

    Origin of electrochemical activity in nano-Li2MnO3; Stabilization via a 'point defect scaffold'

    Get PDF
    Molecular dynamics (MD) simulations of the charging of Li2MnO3 reveal that the reason nanocrystalline-Li2MnO3 is electrochemically active, in contrast to the parent bulk-Li2MnO3, is because in the nanomaterial the tunnels, in which the Li ions reside, are held apart by Mn ions, which act as a pseudo 'point defect scaffold'. The Li ions are then able to diffuse, via a vacancy driven mechanism, throughout the nanomaterial in all spatial dimensions while the 'Mn defect scaffold' maintains the structural integrity of the layered structure during charging. Our findings reveal that oxides, which comprise cation disorder, can be potential candidates for electrodes in rechargeable Li-ion batteries. Moreover, we propose that the concept of a 'point defect scaffold' might manifest as a more general phenomenon, which can be exploited to engineer, for example, two or three-dimensional strain within a host material and can be fine-tuned to optimize properties, such as ionic conductivity

    Revival of the magnetar PSR J1622-4950: observations with MeerKAT, Parkes, XMM-Newton, Swift, Chandra, and NuSTAR

    Get PDF
    New radio (MeerKAT and Parkes) and X-ray (XMM-Newton, Swift, Chandra, and NuSTAR) observations of PSR J1622-4950 indicate that the magnetar, in a quiescent state since at least early 2015, reactivated between 2017 March 19 and April 5. The radio flux density, while variable, is approximately 100x larger than during its dormant state. The X-ray flux one month after reactivation was at least 800x larger than during quiescence, and has been decaying exponentially on a 111+/-19 day timescale. This high-flux state, together with a radio-derived rotational ephemeris, enabled for the first time the detection of X-ray pulsations for this magnetar. At 5%, the 0.3-6 keV pulsed fraction is comparable to the smallest observed for magnetars. The overall pulsar geometry inferred from polarized radio emission appears to be broadly consistent with that determined 6-8 years earlier. However, rotating vector model fits suggest that we are now seeing radio emission from a different location in the magnetosphere than previously. This indicates a novel way in which radio emission from magnetars can differ from that of ordinary pulsars. The torque on the neutron star is varying rapidly and unsteadily, as is common for magnetars following outburst, having changed by a factor of 7 within six months of reactivation.Comment: Published in ApJ (2018 April 5); 13 pages, 4 figure

    The 1.28 GHz MeerKAT DEEP2 Image

    Get PDF
    We present the confusion-limited 1.28 GHz MeerKAT DEEP2 image covering one qb » ¢ 68 FWHM primarybeam area with θ = 7 6 FWHM resolution and s = m - n 0.55 0.01 Jy beam 1 rms noise. Its J2000 center position α = 04h 13m 26 4, δ = −80° 00′ 00″ was selected to minimize artifacts caused by bright sources. We introduce the new 64-element MeerKAT array and describe commissioning observations to measure the primary-beam attenuation pattern, estimate telescope pointing errors, and pinpoint (u, v) coordinate errors caused by offsets in frequency or time. We constructed a 1.4 GHz differential source count by combining a power-law count fit to the DEEP2 confusion P(D) distribution from 0.25 to 10 μJy with counts of individual DEEP2 sources between 10 μJy and 2.5 mJy. Most sources fainter than S ∼ 100 μJy are distant star-forming galaxies (SFGs) obeying the far-IR/ radio correlation, and sources stronger than 0.25 μJy account for ∼93% of the radio background produced by SFGs. For the first time, the DEEP2 source count has reached the depth needed to reveal the majority of the star formation history of the universe. A pure luminosity evolution of the 1.4 GHz local luminosity function consistent with the Madau & Dickinson model for the evolution of SFGs based on UV and infrared data underpredicts our 1.4 GHz source count in the range -5 log Jy 4 [ ( )] S

    The SARAO MeerKAT 1.3 GHz Galactic Plane Survey

    Get PDF
    We present the SARAO MeerKAT Galactic Plane Survey (SMGPS), a 1.3 GHz continuum survey of almost half of the Galactic Plane (251○ ≤l ≤ 358○ and 2○ ≤l ≤ 61○ at |b| ≤ 1 5). SMGPS is the largest, most sensitive and highest angular resolution 1 GHz survey of the Plane yet carried out, with an angular resolution of 8″ and a broadband RMS sensitivity of ∼10–20 μJy beam−1. Here we describe the first publicly available data release from SMGPS which comprises data cubes of frequency-resolved images over 908–1656 MHz, power law fits to the images, and broadband zeroth moment integrated intensity images. A thorough assessment of the data quality and guidance for future usage of the data products are given. Finally, we discuss the tremendous potential of SMGPS by showcasing highlights of the Galactic and extragalactic science that it permits. These highlights include the discovery of a new population of non-thermal radio filaments; identification of new candidate supernova remnants, pulsar wind nebulae and planetary nebulae; improved radio/mid-IR classification of rare Luminous Blue Variables and discovery of associated extended radio nebulae; new radio stars identified by Bayesian cross-matching techniques; the realisation that many of the largest radio-quiet WISE H II region candidates are not true H II regions; and a large sample of previously undiscovered background H I galaxies in the Zone of Avoidance

    The MeerKAT Galaxy Cluster Legacy Survey: I. Survey overview and highlights

    Get PDF
    Please abstract in the article.The South African Radio Astronomy Observatory (SARAO), the National Research Foundation (NRF), the National Radio Astronomy Observatory, US National Science Foundation, the South African Research Chairs Initiative of the DSI/NRF, the SARAO HCD programme, the South African Research Chairs Initiative of the Department of Science and Innovation.http://www.aanda.orghj2022Physic

    Model inter-comparison for short-range forecasts over the southern African domain

    No full text
    Numerical weather prediction (NWP) models have been increasing in skill and their capability to simulate weather systems and provide valuable information at convective scales has improved in recent years. Much effort has been put into developing NWP models across the globe. Representation of physical processes is one of the critical issues in NWP, and it differs from one model to another. We investigated the performance of three regional NWP models used by the South African Weather Service over southern Africa, to identify the model that produces the best deterministic forecasts for the study domain. The three models – Unified Model (UM), Consortium for Small-scale Modelling (COSMO) and Weather Research and Forecasting (WRF) – were run at a horizontal grid spacing of about 4.4 km. Model forecasts for precipitation, 2-m temperature, and wind speed were verified against different observations. Snow was evaluated against reported snow records. Both the temporal and spatial verification of the model forecasts showed that the three models are comparable, with slight variations. Temperature and wind speed forecasts were similar for the three different models. Accumulated precipitation was mostly similar, except where WRF captured small rainfall amounts from a coastal low, while it over-estimated rainfall over the ocean. The UM showed a bubble-like shape towards the tropics, while COSMO cut-off part of the rainfall band that extended from the tropics to the sub-tropics. The COSMO and WRF models simulated a larger spatial coverage of precipitation than UM and snow-report records.Significance: Extreme weather events, such as tornadoes, floods, strong winds and heat waves, have significant impacts on society, the economy, infrastructure, agriculture and many other sectors. These impacts may be mitigated or even prevented through early warning systems which depend on the use of weather forecasts and information from NWP models. As South Africa depends on models from developed countries, these models may have shortcomings in capturing extreme weather events over the southern African region
    corecore