201 research outputs found

    Reply to ‘Comment on “Dependence of shear wave seismoelectrics on soil textures: a numerical study in the vadose zone by F.I. Zyserman, L.B. Monachesi and L. Jouniaux” by Revil, A.’

    Get PDF
    In this paper we reply to a the comment made by Revil (2017) on our paper (2017, Geophys. J. Int., 208), where we describe seismoelectric phenomena in the vadose zone based on the theory of Pride empirically extended for unsaturated conditions. We analyse and answer each one of the enumerated critics, and reaffirm the conclusions of our work. In particular, we prove that using the conductivity model suggested by Revil (2017) does not change our predictions significantly, contrary to what was argued in the comment. Further, in the light of previous and new theoretical and experimental results existing in the literature, we confirm the reasonability of having tested a non-monotonic saturation dependent streaming potential coefficient model besides the monotonic one, and discuss the suitability of assuming a linear relation between the permeability and the excess charge.Fil: Zyserman, Fabio Ivan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas. Departamento de Geofísica Aplicada; ArgentinaFil: Monachesi, Leonardo Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Negro. Sede Alto Valle. Instituto de Investigaciones en Paleobiología y Geología; ArgentinaFil: Jouniaux, L.. Centre National de la Recherche Scientifique; Franci

    The shallow boreholes at The AltotiBerina near fault Observatory (TABOO; northern Apennines of Italy)

    Get PDF
    Abstract. As part of an interdisciplinary research project, funded by the European Research Council and addressing the mechanics of weak faults, we drilled three 200–250 m-deep boreholes and installed an array of seismometers. The array augments TABOO (The AltotiBerina near fault ObservatOry), a scientific infrastructure managed by the Italian National Institute of Geophysics and Volcanology. The observatory, which consists of a geophysical network equipped with multi-sensor stations, is located in the northern Apennines (Italy) and monitors a large and active low-angle normal fault. The drilling operations started at the end of 2011 and were completed by July 2012. We instrumented the boreholes with three-component short-period (2 Hz) passive instruments at different depths. The seismometers are now fully operational and collecting waveforms characterised by a very high signal to noise ratio that is ideal for studying microearthquakes. The resulting increase in the detection capability of the seismic network will allow for a broader range of transients to be identified

    An analytical solution to assess the SH seismoelectric response of the vadose zone

    Get PDF
    We derive an analytical solution of the seismoelectric conversions generated in the vadose zone, when this region is crossed by a pure shear horizontal (SH) wave. Seismoelectric conversions are induced by electrokinetic effects linked to relative motions between fluid and porous media. The considered model assumes a 1D soil constituted by a single layer on top of a half-space in contact at the water table, and a shearing force located at the earth?s surface as the wave source. The water table is an interface expected to induce a seismoelectric interfacial response (IR). The top layer represents a porous rock in which porous space is partially saturated by water and air, while the half-space is completely saturated with water, representing the saturated zone. The analytical expressions for the coseismic fields and the interface responses, both electric and magnetic, are derived by solving Pride's equations with proper boundary conditions. An approximate analytical expression of the solution is also obtained, which is very simple and applicable in a fairly broad set of situations. Hypothetical scenarios are proposed to study and analyse the dependence of the electromagnetic fields on various parameters of the medium. An analysis of the approximate solution is also made together with a comparison to the exact solution. The main result of the present analysis is that the amplitude of the interface response generated at the water table is found to be proportional to the jump in the electric current density, which in turn depends on the saturation contrast, poro-mechanical and electrical properties of the medium and on the amplitude of the solid displacement produced by the source. This result is in agreement with the one numerically obtained by the authors, which has been published in a recent work. We also predict the existence of an interface response located at the surface, and that the electric interface response is several orders of magnitude bigger than the electric coseismic field, whereas it is the opposite using compressional waves as shown by theoretical and experimental results. This fact should encourage the performance of field and laboratory tests to check the viability of SHTE seismoelectrics as a near surface prospecting/monitoring tool.Facultad de Ciencias Astronómicas y Geofísica

    SH Seismoelectric Response of a Glacier : An Analytic Study

    Get PDF
    In this work we derive the analytic solutions to the system of equations modeling, within the framework of Pride's theory, the seismic-to-electromagnetic conversions taking place in a glacial environment. Considering a one-dimensional approach, we set a pure shear horizontal wave seismic source on top of an elastic medium representing the glacier, which overlies a porous medium fully saturated with water, representing the glacier bed. The obtained solutions allow to separately represent and analyze the induced electromagnetic responses, the so called coseismic waves, for both the electric and magnetic fields along with the signals originated at the glacier bottom, the electric interface response, and magnetic interface response. We also propose approximate solutions, useful to be used in a fast inversion algorithm. We analyze the characteristics of the induced electromagnetic signals and their dependence on the type of glacier bed, considering an unconsolidated one and a consolidated one. The main results of the present paper are manifold, on the one hand, the mentioned analytic solutions, on the other hand, that the electric interface response originated at the glacier bottom is proportional to the electric current density at this depth, and depends on textural and electrical properties of the basement. We also showed that the amplitude of the electric interface response is three orders of magnitude higher than the amplitude of the electric coseismic field. This fact reinforces the idea proposed in our previous works that it would be interesting to test shear horizontal seismoelectrics as a possible geophysical prospecting and monitoring tool.Facultad de Ciencias Astronómicas y Geofísica

    Dependence of shear wave seismoelectrics on soil textures: a numerical study in the vadose zone

    Get PDF
    In this work, we study seismoelectric conversions generated in the vadose zone, when this region is traversed by a pure SH wave. We assume that the soil is a 1-D partially saturated lossy porous medium and we use the van Genuchten's constitutive model to describe the water saturation profile. Correspondingly, we extend Pride's formulation to deal with partially saturated media. In order to evaluate the influence of different soil textures we perform a numerical analysis considering, among other relevant properties, the electrokinetic coupling, coseismic responses and interface responses (IRs). We propose new analytical transfer functions for the electric and magnetic field as a function of the water saturation, modifying those of Bordes et al. and Garambois & Dietrich, respectively. Further, we introduce two substantially different saturation-dependent functions into the electrokinetic (EK) coupling linking the poroelastic and the electromagnetic wave equations. The numerical results show that the electric field IRs markedly depend on the soil texture and the chosen EK coupling model, and are several orders of magnitude stronger than the electric field coseismic ones. We also found that the IRs of the water table for the silty and clayey soils are stronger than those for the sandy soils, assuming a non-monotonous saturation dependence of the EK coupling, which takes into account the charged air-water interface. These IRs have been interpreted as the result of the jump in the viscous electric current density at the water table. The amplitude of the IR is obtained using a plane SH wave, neglecting both the spherical spreading and the restriction of its origin to the first Fresnel zone, effects that could lower the predicted values. However, we made an estimation of the expected electric field IR amplitudes detectable in the field by means of the analytical transfer functions, accounting for spherical spreading of the SH seismic waves. This prediction yields a value of 15 μV m-1, which is compatible with reported values.Facultad de Ciencias Astronómicas y GeofísicasConsejo Nacional de Investigaciones Científicas y Técnica

    An analytical solution to assess the SH seismoelectric response of the vadose zone

    Get PDF
    We derive an analytical solution of the seismoelectric conversions generated in the vadose zone, when this region is crossed by a pure shear horizontal (SH) wave. Seismoelectric conversions are induced by electrokinetic effects linked to relative motions between fluid and porous media. The considered model assumes a 1D soil constituted by a single layer on top of a half-space in contact at the water table, and a shearing force located at the earth?s surface as the wave source. The water table is an interface expected to induce a seismoelectric interfacial response (IR). The top layer represents a porous rock in which porous space is partially saturated by water and air, while the half-space is completely saturated with water, representing the saturated zone. The analytical expressions for the coseismic fields and the interface responses, both electric and magnetic, are derived by solving Pride's equations with proper boundary conditions. An approximate analytical expression of the solution is also obtained, which is very simple and applicable in a fairly broad set of situations. Hypothetical scenarios are proposed to study and analyse the dependence of the electromagnetic fields on various parameters of the medium. An analysis of the approximate solution is also made together with a comparison to the exact solution. The main result of the present analysis is that the amplitude of the interface response generated at the water table is found to be proportional to the jump in the electric current density, which in turn depends on the saturation contrast, poro-mechanical and electrical properties of the medium and on the amplitude of the solid displacement produced by the source. This result is in agreement with the one numerically obtained by the authors, which has been published in a recent work. We also predict the existence of an interface response located at the surface, and that the electric interface response is several orders of magnitude bigger than the electric coseismic field, whereas it is the opposite using compressional waves as shown by theoretical and experimental results. This fact should encourage the performance of field and laboratory tests to check the viability of SHTE seismoelectrics as a near surface prospecting/monitoring tool.Facultad de Ciencias Astronómicas y Geofísica

    Reply to ‘Comment on “Dependence of shear wave seismoelectrics on soil textures: a numerical study in the vadose zone by F.I. Zyserman, L.B. Monachesi and L. Jouniaux” by Revil, A.’

    Get PDF
    In this paper we reply to a the comment made by Revil (2017) on our paper (2017, Geophys. J. Int., 208), where we describe seismoelectric phenomena in the vadose zone based on the theory of Pride empirically extended for unsaturated conditions. We analyse and answer each one of the enumerated critics, and reaffirm the conclusions of our work. In particular, we prove that using the conductivity model suggested by Revil (2017) does not change our predictions significantly, contrary to what was argued in the comment. Further, in the light of previous and new theoretical and experimental results existing in the literature, we confirm the reasonability of having tested a non-monotonic saturation dependent streaming potential coefficient model besides the monotonic one, and discuss the suitability of assuming a linear relation between the permeability and the excess charge.Facultad de Ciencias Astronómicas y GeofísicasConsejo Nacional de Investigaciones Científicas y Técnica

    A simple model to analytically assess the SH seismoelectric response of the vadose zone

    Get PDF
    In this work an analytical solution of the seismoelectric conversions generated in the vadose zone, when this region is traversed by a pure SH wave, is derived. The considered model assumes a one-dimensional soil constituted by two homogeneous media in contact at the water table, and a shearing force located at the earth’s surface as the wave source. The model also considers that the electroosmotic feedback can be neglected in Biot’s equations, as it is usually assumed. The upper medium represents a partially saturated porous rock whose porous space contains the minimum amount of water, while the lower medium is completely saturated with water, representing the saturated zone. The analytical expressions for both electric and magnetic fields are analyzed for a hypothetical scenario. The main result shows that a sharp contrast in water saturation at the water table can induce strong interfacial responces in both fields.Facultad de Ciencias Astronómicas y Geofísica

    The Star Formation History of M32

    Get PDF
    We use deep HST ACS/HRC observations of a field within M32 (F1) and an M31 background field (F2) to determine the star formation history (SFH) of M32 from its resolved stellar population. We find that 2-5Gyr old stars contribute \som40%+/- 17% of M32's mass, while 55%+/-21% of M32's mass comes from stars older than 5 Gyr. The mass-weighted mean age and metallicity of M32 at F1 are =6.8+/-1.5 Gyr and =-0.01+/-0.08 dex. The SFH additionally indicates the presence of young (<2 Gyr old), metal-poor ([M/H]\sim-0.7) stars, suggesting that blue straggler stars contribute ~2% of the mass at F1; the remaining \sim3% of the mass is in young metal-rich stars. Line-strength indices computed from the SFH imply a light-weighted mean age and metallicity of 4.9 Gyr and [M/H] = -0.12 dex, and single-stellar-population-equivalent parameters of 2.9+/-0.2 Gyr and [M/H]=0.02+/-0.01 dex at F1 (~2.7 re). This contradicts spectroscopic studies that show a steep age gradient from M32's center to 1re. The inferred SFH of the M31 background field F2 reveals that the majority of its stars are old, with \sim95% of its mass already acquired 5-14 Gyr ago. It is composed of two dominant populations; \sim30%+/-7.5% of its mass is in a 5-8 Gyr old population, and \sim65%+/-9% of the mass is in a 8-14 Gyr old population. The mass-weighted mean age and metallicity of F2 are =9.2+/-1.2 Gyr and =-0.10+/-0.10 dex, respectively. Our results suggest that the inner disk and spheroid populations of M31 are indistinguishable from those of the outer disk and spheroid. Assuming the mean age of M31's disk at F2 (\sim1 disk scale length) to be 5-9 Gyr, our results agree with an inside-out disk formation scenario for M31's disk.Comment: Accepted to ApJ. 24 pages, 18 figures. A high-resolution version can be downloaded from http://www.astro.rug.nl/~monachesi/monachesi-sfh.pd
    corecore