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Abstract. As part of an interdisciplinary research project, funded by the European Research Council and ad-
dressing the mechanics of weak faults, we drilled three 200–250 m-deep boreholes and installed an array of
seismometers. The array augments TABOO (The AltotiBerina near fault ObservatOry), a scientific infrastruc-
ture managed by the Italian National Institute of Geophysics and Volcanology. The observatory, which consists
of a geophysical network equipped with multi-sensor stations, is located in the northern Apennines (Italy) and
monitors a large and active low-angle normal fault.

The drilling operations started at the end of 2011 and were completed by July 2012. We instrumented the
boreholes with three-component short-period (2 Hz) passive instruments at different depths. The seismometers
are now fully operational and collecting waveforms characterised by a very high signal to noise ratio that is
ideal for studying microearthquakes. The resulting increase in the detection capability of the seismic network
will allow for a broader range of transients to be identified.

1 Introduction: scientific background

Scientists’ ability to integrate geological, seismological and
laboratory observations related to earthquakes and faulting
are essential for opening new paths of discovery and increas-
ing our understanding of fault mechanics. The main difficulty
in reconciling multidisciplinary observations is the scale de-
pendence, which characterises the underlying physical pro-
cesses that are inherent to each discipline. To tackle this
challenge, the main prerequisites are the availability of high-
resolution data and access to state-of-the-art research infras-
tructure that allow for the analysis of innovative and original
data sets.

To lower the minimum earthquake detection threshold and
to enhance the resolution of the signals recorded by our seis-
mic network, we decided to build a seismological antenna at
depth. These field observations complement the laboratory
data produced by a newly built biaxial rock deformation ap-
paratus within a pressure vessel (Collettini et al., 2014) ca-
pable to record acoustic transients emitted from deforming
rock samples.

The instrumented boreholes are part of The AltotiBe-
rina near fault ObservatOry (TABOO;http://taboo.rm.ingv.
it/; Chiaraluce et al., 2014), a scientific infrastructure man-
aged by INGV (Istituto Nazionale di Geofisica e Vulcanolo-
gia). The infrastructure consists of sites equipped with multi-
sensor stations (seismometers, GPS, geochemical and elec-
tromagnetic sensors), devoted to the monitoring of a 60 km-
long active normal fault system located along the northern
Apennines of Italy (Fig. 1).

The fault system monitored via TABOO is dominated by
the Alto Tiberina fault (ATF), a low-angle normal fault dip-
ping in the range of 15–20◦. In the same area, moderate to
large earthquakes seem to nucleate on steeply dipping nor-
mal faults antithetic to ATF (Fig. 1). The ATF is oriented at
high angle to the maximum vertical compressive stress,σ1,
and is therefore severely misoriented within the active stress
field (Collettini and Barchi, 2002). The ATF, as many other
low-angle normal faults (LANF) around the world (Collettini
et al., 2011), formed as a gently dipping structure and is char-
acterised by a high and constant rate of microseismic activity
(Chiaraluce et al., 2007). These observations, collected in the
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Figure 1. Illustration showing the geological and geophysical char-
acteristics of the TABOO test site.

last ten years, pose numerous questions such as the follow-
ing: how can a LANF initiate at a high angle to the maximum
compressive stress? What are the physical properties of the
fault rocks? Does the fault generate only microseismicity, by
the reactivation of localised fault patches, or also large earth-
quakes with a magnitude of up to 7 that can break the entire
fault surface? To answer these questions, we have developed
an interdisciplinary research project addressing the mechan-
ics of seismic vs. aseismic deformation.

Here we report on site selection and instrumentation, and
discuss the quality of background data.

2 Site selection

We selected our chosen sites for the seismological antenna
(Fig. 2; a zoom of the area inside the box is found at the
bottom left) for two reasons. First, the location of a nearby
deep borehole (Mt. Civitello; 5.6 km depth) that is one of the
deepest wells drilled by the Italian National organisation for
Hydrocarbons (ENI). Borehole and laboratoryP wave ve-
locities (Trippetta et al., 2010, 2013) have been integrated
with P wave velocities obtained from best migration analysis
of the seismic reflection profiles (Mirabella et al., 2011) and
earthquake data collected by TABOO (Latorre et al., 2014) to
develop a detailed one-dimensional velocity model for earth-
quake locations (Table 1).

Furthermore, observations of microseismic activity (in-
cluding repeating earthquakes), which might be related to the
ATF, nucleate at 5 km depth. Second, the ATF is a potential
target for a deep-drilling project (Multidisciplinary Observa-
tory and Laboratory of Experiments along a drilling in cen-
tral Italy; MOLE). An ICDP (International Continental sci-
entific Drilling Program)-funded workshop was held in May
2008 (Cocco et al., 2009) to analyse its scientific and techno-
logical feasibility. One major outcome of the workshop was
a determination that to sample uncompromised fault rock
from seismogenic depth would require a borehole with a total
depth of 5–6 km. This borehole would target the source re-
gions of repeating microearthquakes and sample those fault
rocks. An array of seismometers at depth, producing low

Figure 2. Map of the study area. Circles show the≈12 000 earth-
quakes that occurred from July 2012 through December 2013. They
have been both scaled in size according to the local magnitude (ML)
of the events and colour-coded based on their hypocentral depth.
The black triangles represent surface stations while the white and
grey triangles show borehole stations. At the bottom left, we show
a zoom of the area where the three boreholes (BAT1, BAT2 and
BAT3) are located. The black icon in the centre is the location of
the Mt. Civitello deep borehole while the upside-down triangle is a
permanent station (ATVO).

noise signals, will monitor microseismic events that occur
at a depth shallower than 5 km.

The geometry of our boreholes forms a triangle centred on
the deep borehole (Mt. Civitello in the bottom left zoom of
Fig. 2) with a mean distance between the sites of about 3 km.

Drilling operations and borehole instrumentation

All boreholes are hosted in the same lithology: the Miocene
Marnoso Arenacea (marly-arenaceous turbidites in Table 1)
formation. Around the seismological antenna, this formation
consisting of marls and arenaceous rocks is characterised by
an average thickness of about 1 km. Under ambient pressure,
the density of the lithology measured in the laboratory is
about 2.46 g cm−3 and the connected porosity ranges from
2.2 to 13.8 % (Trippetta, personal communication, 2014).

The holes were drilled with a traditional rotary drilling
technique and did not include any coring operations. We used
drill rods of diverse diameters and weights. Drill collars were
connected to the drill bit to keep the drill string straight. We
used a drill bit designed for medium-hard rock types that had
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Table 1. AverageP wave velocity for the lithologies encountered in the Mt. Civitello borehole.

P wave velocity (km s−1) Borehole Laboratory Seismic profiles Seismology

Marly-arenaceous turbidites 4.0 4.0 4.0 4.0
Carbonates 5.6 6.0 5.5 5.5
Triassic evaporites 6.3 6.4 6.1 6.1

Figure 3. An example of a site hosting the seismic instruments:
BAT2 station. The solar panels provide power to the acquisition and
transmission system (Wi-Fi antenna). In the case of a lack of sun,
there is a set of batteries that can power the station for about ten
days. There are three concrete boxes accommodating the broadband
(BB) and short-period sensors located at the surface plus the well-
head with the cable connecting the seismometer at depth with the
acquisition system.

a diameter of 165.1 mm (6 1/2 in.). The rate of penetration
was generally quite regular, ranging from 2.65 to 3.75 m h−1.

To ensure a better insulation of the sensor from surface
noise and a better coupling of the seismometer with the sur-
rounding rocks, we decided to case only the first 9 m of the
boreholes with a temporary iron casing (220 mm).

Due to the local lithology conditions and the stability of
the boreholes, we were able to avoid casing in two sites
(BAT1 and BAT2). After the completion of drilling, the in-
struments were lowered and cemented in, with cement filling
the borehole to about 10 m above the sensors. The cement
was mixed with rock salt in order to increase the settling
time. The remaining portions of the boreholes were filled
with sand, to avoid cable torsion in the case of large seismic
events.

At the third site (BAT3), we encountered problems while
drilling. At about 180 m depth, we experienced near total
loss of the drilling fluid into the formation. We suspect that
this probably occurred due to the intersection of the borehole
with a highly fractured zone. For this reason, we installed

a plastic casing (polyvinyl chloride, PVC) within the entire
borehole to avoid loss of the borehole.

The three boreholes were drilled to different total depths:
182 m (BAT1), 204 m (BAT2) and 250 m (BAT3). This dif-
ference was by design as we halted drilling once we encoun-
tered less fractured, more competent lithologies, at a depth of
around 200 m in BAT1 and BAT2. Each borehole is equipped
with a sensor at the bottom of the hole and at the surface,
while the deepest borehole (BAT3) has a vertical array, with
a sensor every 100 m (50, 150 and 250 m).

The sensors consist of three-component short-period (SP)
seismometers with a natural frequency of 2 Hz. The signal is
sampled at 500 Hz. The instruments are passive geophones
installed inside 1.06 m long steel housing with a diameter of
8.8 cm and a weight of 30 kg. We decided to install SP pas-
sive instruments as we mainly deal with small to moderate
earthquakes that have a more interesting bandwidth toward
the higher frequencies. A sampling rate of 500 Hz allows for
a complete recording up to 200 Hz. Moreover, by using pas-
sive sensors, we do not need a power supply in the boreholes,
which can be a source of complications for long-term exper-
iments.

The three sites have also been equipped with additional
short-period and broadband seismometers positioned at the
surface (SP and BB respectively in Fig. 3, where we show
a picture of BAT1 site) to allow for a better comparison and
association between data collected by both seismometers at
depth and the other stations of the TABOO network.

The TABOO network has two additional short-period seis-
mometers installed inside shallow boreholes further to the
north (grey triangles in Fig. 2). They were installed by INGV
in early 2000. As these sensors are installed within the un-
consolidated alluvial sediments of the Tiber valley and are
mainly used for the analysis of site effects, they do not pro-
duce high-quality data. Our decision to drill in the Marnoso
Arenacea formation was based on this experience.

Power at the remote sites is supplied by solar panels. The
dedicated transmission system is composed of a Wi-Fi an-
tenna linked to a radio backbone (Fig. 3) and transmits data in
real time to the INGV acquisition centre located about 80 km
away.

The three sites are now completely operative and record
high-quality data characterised by a high signal to noise ra-
tio (S/N). They enhance the detection capability of the local
area down to negative magnitude events (Chiaraluce et al.,
2014). In Fig. 4a and b, two power spectral densities from
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Figure 4. Power spectral density computed from data recorded during one week at BAT3 at a depth of 150(a) and 250(b) m.

Figure 5. Two small earthquakes recorded at BAT3. Top trace: surface sensor. Middle trace: sensor at 150 m. Bottom trace: bottom sensor
(250 m).

one week of recording at station BAT3 by the sensors in-
stalled at a depth of 150 and 250 m are shown. It is evident
that at high frequencies, the noise level is significantly re-
duced in the deeper sensor. Also, the high number of earth-
quakes (bell-shaped spectra in the period band 0.01–10 s)
recorded by both sensors is significant.

Figure 5 compares the recording of two low-magnitude
earthquakes (local magnitude−1.0 and−0.6) for station
BAT3 by sensors at the surface, 150 m depth and 250 m
depth. It is evident that the deepest sensor is suitable to record
even smaller earthquakes, while at the surface only the larger
event is recognisable and characterised by a more complex
waveform.

3 Results and conclusions

Figure 2 shows a map view of the seismicity we gathered
with the TABOO seismic network which includes seismic

stations at the surface (black triangles) and is complemented
by the stations at depth (white and grey triangles). We in-
dicate the position of BAT1, BAT2 and BAT3 (white trian-
gles inside the black box highlighting the zoomed-in area in
Fig. 2) relative to both the entire network and the seismic
activity. About 12 000 earthquakes,−1.2<ML <3.9, were
recorded from July 2012, when all the three borehole sta-
tions were connected to the acquisition system, through to
December 2013. The contribution of the borehole stations
to the network is highly significant. In the cited time span,
33 520P wave arrival times were obtained from the borehole
recordings of the deepest sensor in each well. The capabil-
ity to record more than 90 % of the events that occurred in
the area also testifies to the robustness of the equipment and
study site.

The earthquakes have been colour-coded based on their
hypocentral depth to point out the location of seismicity and
the array relative to the ATF geometry. The boreholes are
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positioned above the shallow seismicity that nucleates on the
ATF at about 5 km depth. Our expectation is to detect nearly
100 % of the microearthquakes occurring on the ATF plane
at shallow depths. As a consequence, the costs of a potential
deep-drilling experiment, would greatly decrease.

We are planning additional instrumentation of TABOO in-
cluding the construction of a strain-metre array. The aim is
to enlarge the spectrum of the observed deformation mech-
anisms. In this way we can additionally reduce the gap be-
tween natural and experimental earthquakes and try to im-
prove our understanding of the physics behind the process.

Our end goal is to compare natural and lab observations.
With the borehole seismometers we are almost able to record
the full range of (high) frequencies characterising the source
of small earthquakes occurring in situ on sub-metre-scale
faults (e.g. local magnitude−1.0 in Fig. 5). While in the
laboratory, we will reproduce microearthquakes on relatively
large 20×20 cm2, fluid-rich experimental faults sheared at in
situ boundary conditions.
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