121 research outputs found

    Annual Production of Creek Chub and Southern Redbelly Dace in a Small Woodland Stream

    Get PDF
    Author Institution: Illinois Natural History Survey Laboratory and Department of Biology, Lakehead UniversityThe annual production of the creek chub, Semotilus atromaculatus, and southern redbelly dace, Phoxinus erytbrogaster, was measured in a small headwater stream in southeastern Ohio. Creek chub annual production was 13.60 g • m~2 per yr, and P/B was 1.16. Dace annual production was 2.77 g • m~2 and P/B was 1.82. Even though the stream was acidic (pH 6.3) and infertile, fish production compared favorably with that of small alkaline streams. Considerable production within allochthonous food chains probably overrides the effects of low in-stream fertility

    Movements of the Creek Chub in a Small Ohio Stream

    Get PDF
    Author Institution: Illinois Natural Survey Laboratory ; Lake Head UniversityCreek chub movements were monitored in a small stream in the spring and summer of 1972 to determine the magnitude of seasonal changes in distribution. A large percentage of the adult chubs moved upstream between late April and mid-May, but distances traveled by individuals were generally less than 300 m. Immature chubs moved upstream throughout the spring and summer, the catch being predominantly 2 and 3 year old fish in May and early June, and 1 and 2 year old fish in late June and July. Upstream movement of all but young-of-the-year chubs greatly exceeded downstream movement. Some young-of-the-year fish drifted downstream passively. Large population shifts, associated with the exodus of fish from 2 beaver ponds, had implications for estimation of population size, mortality and other population parameters

    Quantification of breast tissue density: correlation between single-sided portable NMR and micro-CT measurements

    Get PDF
    Mammographic density (MD) is a strong independent risk factor for breast cancer. Traditional screening for MD using X-ray mammography involves ionising radiation, which is not suitable for young women, those with previous radiation exposure, or those having undergone a partial mastectomy. Therefore, alternative approaches for MD screening that do not involve ionising radiation will be important as the clinical use of MD increases, and as more frequent MD testing becomes desirable for research purposes. We have previously demonstrated the potential utility of spin relaxation-based, single-sided portable-NMR measurements for the purpose of MD quantification. We present here a more refined analysis by quantifying breast tissue density in excised samples on a continuous scale (0% to 100% fibroglandular tissue content) using micro-CT (μCT), and comparing the results to spin-relaxation and diffusion portable-NMR measurements of the same samples. μCT analysis of mammary tissues containing high- and low-MD (HMD and LMD, respectively) regions had Hounsfield Unit (HU) histograms with a bimodal pattern, with HMD regions exhibiting significantly higher HU values than LMD regions. Quantitative MD (%HMD) values obtained using μCT exhibited an excellent correlation with portable-NMR results, namely longitudinal spin-relaxation time constants (T) and the relative tissue water content obtained from portable-NMR diffusion measurements (R = 0.92, p

    Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR

    Full text link
    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (mu_B > 500 MeV), effects of chiral symmetry, and the equation-of-state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2022, in the context of the worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal

    Killer immunoglobulin-like receptor and human leukocyte antigen-C genotypes in rheumatoid arthritis primary responders and non-responders to anti-TNF-α therapy

    Get PDF
    The identification of patients who will respond to anti-tumor necrosis factor alpha (anti-TNF-α) therapy will improve the efficacy, safety, and economic impact of these agents. We investigated whether killer cell immunoglobulin-like receptor (KIR) genes are related to response to anti-TNF-α therapy in patients with rheumatoid arthritis (RA). Sixty-four RA patients and 100 healthy controls were genotyped for 16 KIR genes and human leukocyte antigen-C (HLA-C) group 1/2 using polymerase chain reaction sequence-specific oligonucleotide probes (PCR-SSOP). Each patient received anti-TNF-α therapy (adalimumab, etanercept, or infliximab), and clinical responses were evaluated after 3 months using the disease activity score in 28 joints (DAS28). We investigated the correlations between the carriership of KIR genes, HLA-C group 1/2 genes, and clinical data with response to therapy. Patients responding to therapy showed a significantly higher frequency of KIR2DS2/KIR2DL2 (67.7% R vs. 33.3% NR; P = 0.012). A positive clinical outcome was associated with an activating KIR–HLA genotype; KIR2DS2(+)HLA-C group 1/2 homozygous. Inversely, non-response was associated with the relatively inhibitory KIR2DS2(–)HLA-C group 1/2 heterozygous genotype. The KIR and HLA-C genotype of an RA patient may provide predictive information for response to anti-TNF-α therapy

    Different Patterns of Evolution in the Centromeric and Telomeric Regions of Group A and B Haplotypes of the Human Killer Cell Ig-Like Receptor Locus

    Get PDF
    The fast evolving human KIR gene family encodes variable lymphocyte receptors specific for polymorphic HLA class I determinants. Nucleotide sequences for 24 representative human KIR haplotypes were determined. With three previously defined haplotypes, this gave a set of 12 group A and 15 group B haplotypes for assessment of KIR variation. The seven gene-content haplotypes are all combinations of four centromeric and two telomeric motifs. 2DL5, 2DS5 and 2DS3 can be present in centromeric and telomeric locations. With one exception, haplotypes having identical gene content differed in their combinations of KIR alleles. Sequence diversity varied between haplotype groups and between centromeric and telomeric halves of the KIR locus. The most variable A haplotype genes are in the telomeric half, whereas the most variable genes characterizing B haplotypes are in the centromeric half. Of the highly polymorphic genes, only the 3DL3 framework gene exhibits a similar diversity when carried by A and B haplotypes. Phylogenetic analysis and divergence time estimates, point to the centromeric gene-content motifs that distinguish A and B haplotypes having emerged ∼6 million years ago, contemporaneously with the separation of human and chimpanzee ancestors. In contrast, the telomeric motifs that distinguish A and B haplotypes emerged more recently, ∼1.7 million years ago, before the emergence of Homo sapiens. Thus the centromeric and telomeric motifs that typify A and B haplotypes have likely been present throughout human evolution. The results suggest the common ancestor of A and B haplotypes combined a B-like centromeric region with an A-like telomeric region
    corecore