38 research outputs found

    Characterization of complex groundwater flows in the environment of singular buildings by combining hydrogeological and non-destructive geophysical (ground-penetrating radar) techniques: Punta Begona Galleries (Getxo, Spain)

    Full text link
    [EN] Locating and quantifying groundwater flow in many built-up areas are a priority with regard to its complete restoration. In this work, a hydrogeological survey of the surroundings of the Punta Begona Galleries (Getxo, Bizkaia), built on a coastal cliff, was completed by using ground penetrating radar (GPR) testing. Thus, the preliminary characterization of soils and rocks in accessible areas of the cliff was first improved by hydrogeological information gathered from a single survey borehole, including permeability measurements by low pressure injection tests (LPTs) and continuous water level monitoring. As a complementary method, the non-destructive GPR technique was performed during both dry and wet hydrological periods and in tandem with the injection tests, providing more complete spatial and temporal images of water flows. Specifically, GPR allows mapping of flow paths in soils and assessing the continuity of fractures in rock masses. Altogether, this complementary approach provides greater knowledge of complex underground flow dynamics in built environments, thus making it easier to make decisions for their managementCity Council of Getxo, Grant/Award Number: OTRI2016-0738; University of the Basque CountryUriarte, JA.; Damas Molla, L.; Sagarna, M.; Aranburu, A.; García García, F.; Antiguedad, I.; Morales, T. (2020). Characterization of complex groundwater flows in the environment of singular buildings by combining hydrogeological and non-destructive geophysical (ground-penetrating radar) techniques: Punta Begona Galleries (Getxo, Spain). Hydrological Processes. 34(4):1004-1015. https://doi.org/10.1002/hyp.13635S1004101534

    Increased nutritional value in food crops

    Get PDF
    Modern agriculture and horticulture must combine two objectives that seem to be almost mutually exclusive: to satisfy the nutritional needs of an increasing human population and to minimize the negative impact on the environment. These two objectives are included in the Goal 2 of the 2030 Agenda for Sustainable Development of the United Nations: End hunger, achieve food security and improved nutrition and promote sustainable agriculture'. Enhancing the nutritional levels of vegetables would improve nutrient intake without requiring an increase in consumption. In this context, the use of beneficial rhizospheric microorganisms for improving, not only growth and yield, but also the nutrient quality of crops represents a promising tool that may respond to the challenges for modern agriculture and horticulture and represents an alternative to the genetic engineering of crops. This paper summarizes the state of the art, the current difficulties associated to the use of rhizospheric microorganisms as enhancers of the nutritional quality of food crops as well as the future prospects

    The glycolytic enzyme, phosphoglycerate mutase, has critical roles in stomatal movement, vegetative growth, and pollen production in Arabidopsis thaliana

    Get PDF
    Stomatal movements require massive changes in guard cell osmotic content, and both stomatal opening and stomatal closure have been shown to be energy-requiring processes. A possible role for glycolysis in contributing to the energetic, reducing requirements, or signalling processes regulating stomatal movements has not been investigated previously. Glycolysis, oxidization of glucose to pyruvate, is a central metabolic pathway and yields a net gain of 2 ATP and 2 NADH. 2,3-biphosphoglycerate-independent phosphoglycerate mutase (iPGAM) is a key enzymatic activity in glycolysis and catalyses the reversible interconversion of 3-phosphoglycerate to 2-phosphoglycerate. To investigate functions of iPGAMs and glycolysis in stomatal function and plant growth, Arabidopsis insertional mutants in At1g09780 and At3g08590, both of which have been annotated as iPGAMs on the basis of sequence homology, were identified and characterized. While single mutants were indistinguishable from the wild type in all plant phenotypes assayed, double mutants had no detectable iPGAM activity and showed defects in blue light-, abscisic acid-, and low CO2-regulated stomatal movements. Vegetative plant growth was severely impaired in the double mutants and pollen was not produced. The data demonstrate that iPGAMs and glycolytic activity are critical for guard cell function and fertility in Arabidopsis

    Global, regional, and national burden of chronic kidney disease, 1990–2017 : a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Health system planning requires careful assessment of chronic kidney disease (CKD) epidemiology, but data for morbidity and mortality of this disease are scarce or non-existent in many countries. We estimated the global, regional, and national burden of CKD, as well as the burden of cardiovascular disease and gout attributable to impaired kidney function, for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017. We use the term CKD to refer to the morbidity and mortality that can be directly attributed to all stages of CKD, and we use the term impaired kidney function to refer to the additional risk of CKD from cardiovascular disease and gout. Methods The main data sources we used were published literature, vital registration systems, end-stage kidney disease registries, and household surveys. Estimates of CKD burden were produced using a Cause of Death Ensemble model and a Bayesian meta-regression analytical tool, and included incidence, prevalence, years lived with disability, mortality, years of life lost, and disability-adjusted life-years (DALYs). A comparative risk assessment approach was used to estimate the proportion of cardiovascular diseases and gout burden attributable to impaired kidney function. Findings Globally, in 2017, 1·2 million (95% uncertainty interval [UI] 1·2 to 1·3) people died from CKD. The global all-age mortality rate from CKD increased 41·5% (95% UI 35·2 to 46·5) between 1990 and 2017, although there was no significant change in the age-standardised mortality rate (2·8%, −1·5 to 6·3). In 2017, 697·5 million (95% UI 649·2 to 752·0) cases of all-stage CKD were recorded, for a global prevalence of 9·1% (8·5 to 9·8). The global all-age prevalence of CKD increased 29·3% (95% UI 26·4 to 32·6) since 1990, whereas the age-standardised prevalence remained stable (1·2%, −1·1 to 3·5). CKD resulted in 35·8 million (95% UI 33·7 to 38·0) DALYs in 2017, with diabetic nephropathy accounting for almost a third of DALYs. Most of the burden of CKD was concentrated in the three lowest quintiles of Socio-demographic Index (SDI). In several regions, particularly Oceania, sub-Saharan Africa, and Latin America, the burden of CKD was much higher than expected for the level of development, whereas the disease burden in western, eastern, and central sub-Saharan Africa, east Asia, south Asia, central and eastern Europe, Australasia, and western Europe was lower than expected. 1·4 million (95% UI 1·2 to 1·6) cardiovascular disease-related deaths and 25·3 million (22·2 to 28·9) cardiovascular disease DALYs were attributable to impaired kidney function. Interpretation Kidney disease has a major effect on global health, both as a direct cause of global morbidity and mortality and as an important risk factor for cardiovascular disease. CKD is largely preventable and treatable and deserves greater attention in global health policy decision making, particularly in locations with low and middle SDI

    Multimessenger NuEM Alerts with AMON

    Get PDF
    The Astrophysical Multimessenger Observatory Network (AMON), has developed a real-time multi-messenger alert system. The system performs coincidence analyses of datasets from gamma-ray and neutrino detectors, making the Neutrino-Electromagnetic (NuEM) alert channel. For these analyses, AMON takes advantage of sub-threshold events, i.e., events that by themselves are not significant in the individual detectors. The main purpose of this channel is to search for gamma-ray counterparts of neutrino events. We will describe the different analyses that make-up this channel and present a selection of recent results

    Análisis del programa Regional de Televisión "Operación Pacifico" una cara distinta de las fuerzs militares

    Get PDF
    Tesis (Comunicador Social-Periodista)--Universidad Autónoma de Occidente, 1998PregradoComunicador(a) Social – Periodist

    Rational stabilization of the C-LytA affinity tag by protein engineering

    No full text
    The C-LytA protein constitutes the choline-binding module of the LytA amidase from Streptococcus pneumoniae. Owing to its affinity for choline and analogs, it is regularly used as an affinity tag for the purification of proteins in a single chromatographic step. In an attempt to build a robust variant against thermal denaturation, we have engineered several salt bridges on the protein surface. All the stabilizing mutations were pooled in a single variant, C-LytAm7, which contained seven changes: Y25K, F27K, M33E, N51K, S52K, T85K and T108K. The mutant displays a 7°C thermal stabilization compared with the wild-type form, together with a complete reversibility upon heating and a higher kinetic stability. Moreover, the accumulation of intermediates in the unfolding of C-LytA is virtually abolished for C-LytAm7. The differences in stability become more evident when the proteins are bound to a DEAE-cellulose affinity column, as most of wild-type C-LytA is denatured at ∼65°C, whereas C-LytAm7 may stand temperatures up to 90°C. Finally, the change in the isoelectric point of C-LytAm7 enhances its solubility at acidic pHs. Therefore, C-LytAm7 behaves as an improved affinity tag and supports the engineering of surface salt bridges as an effective approach for protein stabilization.Ministerio de Educación y Ciencia (MEC)Fundación SALVAT-InquifarmaDepto. de Bioquímica y Biología MolecularFac. de Ciencias BiológicasTRUEpu

    Understanding metabolism of arginine in biological systems via MALDI imaging

    No full text
    Arginine is an important amino acid but has been barely studied in plants. The little research that has been done indicates that the pathways of synthesis are similar to those found in animals and procaryotes. However little is known about the cellular and tissue localization of the amino acid in plants. The research reported in this paper was designed to examine whether MALDI-MSI was sufficiently sensitive to examine the distribution of this amino acid in plant material, and whether the synthetic pathways were co-located. In wheat and orchid roots, the amount of arginine in tissues varies greatly and the pathways for its synthesis were not always detected with the amino acid
    corecore