59 research outputs found

    El estatus socioeconómico influencia la condición física en adolescentes europeos : el estudio HELENA

    Get PDF
    Introduction: The influence of socioeconomic status on health-related fitness is not clear. Aim: To examine the influence of socioeconomic status on health-related fitness in adolescents. Methods: A total of 3,259 adolescents (15.0 ± 1.3 y) from the Healthy Lifestyle in Europe by Nutrition in Ado- lescence Cross-Sectional Study (HELENA-CSS) partici- pated in the study. Socioeconomic status was assessed by the family affluence scale (FAS). Speed-agility, muscular strength and cardiorespiratory fitness were assessed. Covariates included total body fat, physical activity and pubertal status. Results: Adolescents with high FAS had significantly higher fitness levels than their peers of lower FAS cate- gories except for speed-agility and handgrip in boys. Overall, the associations observed presented a medium to large effect size. Conclusion: These results suggest that socioeconomic status is positively associated with physical fitness in European adolescents independently of total body fat and habitual physical activityIntroducción: La influencia del estatus socioeconómico sobre la condición física en relación con la salud no está clara. Objetivo: Examinar la influencia del estatus socioeconómico sobre la condición física en relación con la salud en adolescentes. Metodología: Un total de 3259 adolescentes (15,0 ± 1,3 años) del “Healthy Lifestyle in Europe by Nutrition in Adolescence Cross-Sectional Study” (HELENA-CSS) participaron en el estudio. El estatus socioeconómico fue medido con una escala de riqueza familiar “family affluence scale (FAS)”. Se midieron velocidad-agilidad, fuerza muscular y capacidad aeróbica. Las covariables incluidas fueron grasa corporal total, actividad física y estadio madurativo. Resultados: Los adolescentes con alto FAS tuvieron significativamente mayores niveles de condición física que aquellos con bajo FAS exceptuando los tests de velocidad-agilidad y fuerza de prensión manual en chicos. En general, las asociaciones observadas presentaron un efecto del tamaño de la muestra (effect size) entre medio y largo. Conclusión: Estos resultados sugieren que el estatus socioeconómico esta positivamente asociado con la condición física en adolescentes Europeos independientemente de la grasa corporal total y el nivel de actividad física

    Synthesis of reaction-adapted zeolites as methanol-to-olefins catalysts with mimics of reaction intermediates as organic structure-directing agents

    Full text link
    [EN] Catalysis with enzymes and zeolites have in common the presence of well-defined single active sites and pockets/cavities where the reaction transition states can be stabilized by longer-range interactions. We show here that for a complex reaction, such as the conversion of methanol-to-olefins (MTO), it is possible to synthesize reaction-adapted zeolites by using mimics of the key molecular species involved in the MTO mechanism. Effort has focused on the intermediates of the paring mechanism because the paring is less favoured energetically than the side-chain route. All the organic structure-directing agents based on intermediate mimics crystallize cage-based small-pore zeolitic materials, all of them capable of performing the MTO reaction. Among the zeolites obtained, RTH favours the whole reaction steps following the paring route and gives the highest propylene/ethylene ratio compared to traditional CHA-related zeolites (3.07 and 0.86, respectively).Li, C.; Paris, C.; Martínez-Triguero, J.; Boronat Zaragoza, M.; Moliner Marin, M.; Corma Canós, A. (2018). Synthesis of reaction-adapted zeolites as methanol-to-olefins catalysts with mimics of reaction intermediates as organic structure-directing agents. Nature Catalysis. 1(7):547-554. https://doi.org/10.1038/s41929-018-0104-7S54755417Stocker, M. Methanol-to-hydrocarbons: catalytic materials and their behavior. Micro. Mesopor. Mater. 29, 3–48 (1999).Tian, P., Wei, Y., Ye, M. & Liu, Z. Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal. 5, 1922–1938 (2015).Ilias, S. & Bhan, A. Mechanism of the catalytic conversion of methanol to hydrocarbons. ACS Catal. 3, 18–31 (2013).Olsbye, U. et al. Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angew. Chem. Int. Ed. 24, 5810–5831 (2012).Hemelsoet, K., Van der Mynsbrugge, J., De Wispelaere, K., Waroquier, M. & Van Speybroeck, V. Unraveling the reaction mechanisms governing methanol-to-olefins catalysis by theory and experiment. ChemPhysChem 14, 1526–1545 (2013).Song, W., Haw, J. F., Nicholas, J. B. & Heneghan, C. S. Methylbenzenes are the organic reaction centers for methanol-to-olefin catalysis on HSAPO-34. J. Am. Chem. Soc. 122, 10726–10727 (2000).Arstad, B. & Kolboe, S. The reactivity of molecules trapped within the SAPO-34 cavities in the methanol-to-hydrocarbons reaction. J. Am. Chem. Soc. 123, 8137–8138 (2001).Xu, T. et al. Synthesis of a benzenium ion in a zeolite with use of a catalytic flow reactor. J. Am. Chem. Soc. 120, 4025–4026 (1998).Song, W., Nicholas, J. B., Sassi, A. & Haw, J. F. Synthesis of the heptamethylbenzene cation in zeolite beta: in situ NMR and theory. Catal. Lett. 81, 49–53 (2002).Xu, S. et al. Direct observation of cyclic carbenium ions and their role in the catalytic cycle of the metahnol-to-olefin reaction over chabazite zeolites. Angew. Chem. Int. Ed. 52, 11564–11568 (2013).Chen, J. et al. Elucidating the olefin formation mechanism in the methanol to olefin reaction over AlPO-18 and SAPO-18. Catal. Sci. Tech. 4, 3268–3277 (2014).Haw, J. F. et al. Roles for cyclopentenyl cations in the synthesis of hydrocarbons from methanol on zeolite catalyst HZSM-5. J. Am. Chem. Soc. 122, 4763–4775 (2000).Svelle, S. et al. Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: ethene formation is mechanistically separated from the formation of higher alkenes. J. Am. Chem. Soc. 128, 14770–14771 (2006).Teketel, S., Olsbye, U., Lillerud, K. P., Beato, P. & S., S. Selectivity control through fundamental mechanistic insight in the conversion of methanol to hydrocarbons over zeolites. Micro. Mesopor. Mater. 136, 33–41 (2010).Zhang, M. et al. Methanol conversion on ZSM-22, ZSM-35 and ZSM-5 zeolites: effects of 10-membered ring zeolite structures on methylcyclopentenyl cations and dual cycle mechanism. RSC Adv. 6, 95855–95864 (2016).Sassi, A. et al. Methylbenzene chemistry on zeolite HBeta: multiple insights into methanol-to-olefin catalysis. J. Phys. Chem. B 106, 2294–2303 (2002).Sassi, A., Wildman, M. A. & Haw, J. F. Reactions of butylbenzene isomers on zeolite HBeta: methanol-to-olefins hydrocarbon pool chemistry and secondary reactions of olefins. J. Phys. Chem. B 106, 8768–8773 (2002).Bjørgen, M., Olsbye, U., Petersen, D. & Kolboe, S. The methanol-to-hydrocarbons reaction: insight into the reaction mechanism from [12C]benzene and [13C]methanol coreactions over zeolite H-beta. J. Catal. 221, 1–10 (2004).McCann, D. M. et al. A complete catalytic cycle for supramolecular methanol-to-olefins conversion by linking theory with experiment. Angew. Chem. Int. Ed. 47, 5179–5182 (2008).Arstad, B., Kolboe, S. & Swang, O. Theoretical study of the heptamethylbenzenium ion. intramolecular isomerizations and C2, C3, C4 alkene elimination. J. Phys. Chem. A 109, 8914–8922 (2005).De Wispelaere, K., Hemelsoet, K., Waroquier, M. & Van Speybroeck, V. Complete low-barrier side-chain route for olefin formation during methanol conversion in H-SAPO-34. J. Catal. 305, 76–80 (2013).Wang, C. M., Wang, Y. D. & Xie, Z. K. Verification of the dual cycle mechanism for methanol-to-olefin conversion in HSAPO-34: a methylbenzene-based cycle from DFT calculations. Catal. Sci. Technol. 4, 2631–2638 (2014).Wang, C. M., Wang, Y. D., Liu, H. X., Xie, Z. K. & Liu, Z. P. Theoretical insight into the minor role of paring mechanism in the methanol-to-olefins conversion within HSAPO-34 catalyst. Micro. Mesopor. Mater. 158, 264–271 (2012).Ilias, S. & Bhan, A. The mechanism of aromatic dealkylation in methanol-to-hydrocarbons conversion on H-ZSM-5: What are the aromatic precursors to light olefins? J. Catal. 311, 6–16 (2014).Erichsen, M. W. et al. Conclusive evidence for two unimolecular pathways to zeolite-catalyzed de-alkylation of the heptamethylbenzenium cation. ChemCatChem 7, 4143–4147 (2015).Bhawe, Y. et al. Effect of cage size on the selective conversion of methanol to light olefins. ACS Catal. 2, 2490–2495 (2012).Kang, J. H. et al. Further studies on how the nature of zeolite cavities that are bounded by small pores influences the conversion of methanol to light olefins. ChemPhysChem 19, 412–419 (2018).Martin, N. et al. Nanocrystalline SSZ-39 zeolite as an efficient catalyst for the methanol-to-olefin (MTO) process. Chem. Commun. 52, 6072–6075 (2016).Dusselier, M., Deimund, M. A., Schmidt, J. E. & Davis, M. E. Methanol-to-olefins catalysis with hydrothermally treated zeolite SSZ-39. ACS Catal. 5, 6078–6085 (2015).Yokoi, T., Yoshioka, M., Imai, H. & Tatsumi, T. Diversification of RTH-type zeolite and its catalytic application. Angew. Chem. Int. Ed. 48, 9884–9887 (2009).Ji, Y., Deimund, M. A., Bhawe, Y. & Davis, M. E. Organic-free synthesis of CHA-type zeolite catalysts for the methanol-to-olefins reaction. ACS Catal. 5, 4456–4465 (2015).Liu, M. et al. Differences in Al distribution and acidic properties between RTH-type zeolites synthesized with OSDAs and without OSDAs. Phys. Chem. Chem. Phys. 16, 4155–4164 (2014).Gallego, E. M. et al. “Ab initio” synthesis of zeolites for preestablished catalytic reactions. Science 355, 1051–1054 (2017).Zones, S. I. & Nakagawa, Y. Use of modified zeolites as reagents influencing nucleation in zeolite synthesis. Stud. Surf. Sci. Catal. 97, 45–52 (1995).Li, C., Moliner, M. & Corma, A. Building zeolites from pre-crystallized units: nanoscale architecture. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.201711422 (2018).Zones, S. I. Zeolite SSZ-13 and its method of preparation. US Patent 4,544,538 (1985).Li, Z., Navarro, M. T., Martínez-Triguero, J., Yu, J. & Corma, A. Synthesis of nano-SSZ-13 and its application in the reaction of methanol to olefins. Catal. Sci. Technol. 6, 5856–5863 (2016).Kumar, M., Luo, H., Román-Leshkov, Y. & Rimer, J. D. SSZ-13 crystallization by particle attachment and deterministic pathways to crystal size control. J. Am. Chem. Soc. 137, 13007–13017 (2015).Martínez-Franco, R., Cantin, A., Moliner, M. & Corma, A. Synthesis of the small pore silicoaluminophosphate STA-6 by using supramolecular self-assembled organic structure directing agents. Chem. Mater. 26, 4346–4353 (2014).Schmidt, J. E., Deimund, M. A., Xie, D. & Davis, M. E. Synthesis of RTH-type zeolites using a diverse library of imidazolium cations. Chem. Mater. 27, 3756–3762 (2015).Moliner, M., Franch, C., Palomares, E., Grill, M. & Corma, A. Cu–SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NOx. Chem. Commun. 48, 8264–8266 (2012).Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).Ditchfield, R., Hehre, W. J. & Pople, J. A. Self-consistent molecular orbital methods. 9. Extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 54, 724–728 (1971).Hehre, W. J., Ditchfield, R. & Pople, J. A. Self-consistent molecular orbital methods. 12. Further extensions of Gaussian-type basis sets for use in molecular-orbital studies of organic-molecules. J. Chem. Phys. 56, 2257–2261 (1972).Frisch, M. J. et al. Gaussian 09, Revision C.01. (Gaussian, Wallingford, 2009).Van Speybroeck, V. et al. First principle chemical kinetics in zeolites: the methanol-to-olefin process as a case study. Chem. Soc. Rev. 43, 7326–7357 (2014)

    La secularización en Cataluña en los informes episcopales (1800-1867)

    Get PDF
    The process of secularization in Catalonia between 1800 and 1867 is reflected in the reports that the bishops of the various dioceses sent to Rome. They pointed out the increasing globalization and that the evangelic values were moving away in revolutionary periods, such as the increased of the religious indifference in the cities, the corruption in the liberal press, ungodly books movements and the decrease of religious practices (Sabbath and Easter compliance, fasting and abstinence). Hence, new doctrines derived from liberalism, as the Protestantism and Socialism, appeared as the true enemies of the Church.El proceso de secularización en Cataluña entre 1800 y 1867 se refleja en los informes que los obispos de las distintas diócesis envían a Roma. Remarcan el proceso creciente de mundanización y alejamiento de los valores evangélicos en los periodos revolucionarios: aumento de la indiferencia religiosa en las ciudades, corrupción de costumbres por la prensa liberal y circulación de libros impíos y disminución de las prácticas religiosas (cumplimiento dominical, pascual, ayuno y abstinencia). Las nuevas doctrinas, protestantismo y socialismo, derivadas del liberalismo, aparecen como los verdaderos enemigos de la Iglesia

    La Ley orgánica 1/1982, de 5 de mayo, de protección civil del derecho al honor, a la intimidad personal y familiar y a la propia imagen

    Get PDF
    Este libro es un estudio completo y riguroso de la Ley española de protección del derecho al honor, a la intimidad personal e imagen, en la que se contienen, tanto reflexiones teóricas, como, sobre todo, una sistematización crítica de los conceptos jurisprudenciales en torno a la aplicación de la misma, los cuales son extrapolables a otros derechos, como el colombiano. Se abordan temas como el concepto de derecho al honor, la determinación de su titular (si puede serlo la persona jurídica) y los conflictos entre dicho derecho fundamental de la personalidad y las libertades de información y expresión, prestándose especial atención al deber de veracidad y a la doctrina del reportaje neutral

    Evaluation of Superparamagnetic Silica Nanoparticles for Extraction of Triazines in Magnetic in-Tube Solid Phase Microextraction Coupled to Capillary Liquid Chromatography

    No full text
    The use of magnetic nanomaterials for analytical applications has increased in the recent years. In particular, magnetic nanomaterials have shown great potential as adsorbent phase in several extraction procedures due to the significant advantages over the conventional methods. In the present work, the influence of magnetic forces over the extraction efficiency of triazines using superparamagnetic silica nanoparticles (NPs) in magnetic in tube solid phase microextraction (Magnetic-IT-SPME) coupled to CapLC has been evaluated. Atrazine, terbutylazine and simazine has been selected as target analytes. The superparamagnetic silica nanomaterial (SiO2-Fe3O4) deposited onto the surface of a capillary column gave rise to a magnetic extraction phase for IT-SPME that provided a enhancemment of the extraction efficiency for triazines. This improvement is based on two phenomena, the superparamegnetic behavior of Fe3O4 NPs and the diamagnetic repulsions that take place in a microfluidic device such a capillary column. A systematic study of analytes adsorption and desorption was conducted as function of the magnetic field and the relationship with triazines magnetic susceptibility. The positive influence of magnetism on the extraction procedure was demonstrated. The analytical characteristics of the optimized procedure were established and the method was applied to the determination of the target analytes in water samples with satisfactory results. When coupling Magnetic-IT-SPME with CapLC, improved adsorption efficiencies (60%–63%) were achieved compared with conventional adsorption materials (0.8%–3%)

    More about sampling and estimation of mercaptans in air samples

    Full text link
    [EN] Several strategies have been developed for sampling and determination of volatile thiols. The selectivity and sensitivity of the proposed methodologies are achieved by using a specific derivatizing reagent. The different procedures assayed are based on air sampling followed by derivatization of the analytes with OPA and isoleucine in alkaline solution. The derivatization products are separated and determined by liquid chromatography and fluorescence detection. To start, the derivatization conditions and stability of the derivates have been studied in order to establish the storage conditions. In general, the strategies studied consisted on trapping and detivatization the thiol compound on different support; a solution (Impinger) or sorbent (C-18 cartridges or glass fiber filter). The analytical properties of the different strategies have been obtained and compared. Procedures are recommended upon specific situations. (C) 2012 Elsevier B.V. All rights reserved.The authors are grateful to the Spanish Ministerio de Economia y Competitividad (project CTQ2011-26760) and to the Generalidad Valenciana (Prometeo Program 2012/45). Y.M.M expresses her grateful for a JdC research contract.Moliner Martínez, Y.; Herráez Hernández, R.; Molins Legua, C.; Verdú Andrés, J.; Avella-Oliver, M.; Campins Falcó, P. (2013). More about sampling and estimation of mercaptans in air samples. Talanta. 106:127-132. doi:10.1016/j.talanta.2012.12.001S12713210
    corecore