23 research outputs found

    The multifaceted roles of gasdermins in cancer biology and oncologic therapies

    Full text link
    The involvement of the Gasdermin (GSDM) protein family in cancer and other pathologies is one of the hottest topics in biomedical research. There are six GSDMs in humans (GSDMA, B, C, D, GSDME/DFNA5 and PJVK/DFNB59) and, except PJVK, they can trigger cell death mostly by pyroptosis (a form of lytic and pro-inflammatory cell death) but also other mechanisms. The exact role of GSDMs in cancer is intricate, since depending on the biological context, these proteins have diverse cell-death dependent and independent functions, exhibit either pro-tumor or anti-tumor functions, and promote either sensitization or resistance to oncologic treatments. In this review we provide a comprehensive overview on the multifaceted roles of the GSDMs in cancer, and we critically discuss the possibilities of exploiting GSDM functions as determinants of anti-cancer treatment and as novel therapeutic targets, with special emphasis on innovative GSDM-directed nano-therapies. Finally, we discuss the issues to be resolved before GSDM-mediated oncologic therapies became a reality at the clinical levelThis study was supported by the Ministerio de Ciencia e Innovaci´on (PID2019-104644RB-I00 -GMB-), the Instituto de Salud Carlos III (CIBERONC, CB16/12/00295 –GMB-; partly supported by FEDER funds) and by the Fundaci´on Científica de la AECC (FC_AECC PROYE19036MOR -GMB-

    Gasdermin B over-expression modulates HER2-targeted therapy resistance by inducing protective autophagy through Rab7 activation

    Get PDF
    Gasdermin B; HER2 breast cancer; Protective autophagyGasdermin B; Càncer de mama HER2; Autofàgia protectoraGasdermin B; Cáncer de mama HER2; Autofagia protectoraBackground Gasdermin B (GSDMB) over-expression promotes poor prognosis and aggressive behavior in HER2 breast cancer by increasing resistance to therapy. Decoding the molecular mechanism of GSDMB-mediated drug resistance is crucial to identify novel effective targeted treatments for HER2/GSDMB aggressive tumors. Methods Different in vitro approaches (immunoblot, qRT-PCR, flow cytometry, proteomic analysis, immunoprecipitation, and confocal/electron microscopy) were performed in HER2 breast and gastroesophageal carcinoma cell models. Results were then validated using in vivo preclinical animal models and analyzing human breast and gastric cancer samples. Results GSDMB up-regulation renders HER2 cancer cells more resistant to anti-HER2 agents by promoting protective autophagy. Accordingly, the combination of lapatinib with the autophagy inhibitor chloroquine increases the therapeutic response of GSDMB-positive cancers in vitro and in zebrafish and mice tumor xenograft in vivo models. Mechanistically, GSDMB N-terminal domain interacts with the key components of the autophagy machinery LC3B and Rab7, facilitating the Rab7 activation during pro-survival autophagy in response to anti-HER2 therapies. Finally, we validated these results in clinical samples where GSDMB/Rab7/LC3B co-expression associates significantly with relapse in HER2 breast and gastric cancers. Conclusion Our findings uncover for the first time a functional link between GSDMB over-expression and protective autophagy in response to HER2-targeted therapies. GSDMB behaves like an autophagy adaptor and plays a pivotal role in modulating autophagosome maturation through Rab7 activation. Finally, our results provide a new and accessible therapeutic approach for HER2/GSDMB + cancers with adverse clinical outcome.This study has been supported by the Ministerio de Ciencia, Innovación y Universidades, Agencia Estatal de Investigación (PID2019-104644RB-I00) -GMB-, the Instituto de Salud Carlos III (CIBERONC, CB16/12/00449 -JA-, CB16/12/00231 -DLN- and CB16/12/00295 -GMB-, PI19/01181 -JA-, PI18/00795, CP17/00063 and RTI2018-095611-A-I00 -DLN- and ERA-NET TRANSCAN-2 -JA- [all partly supported by FEDER funds]) and by the AECC Scientific Foundation (FC_AECC PROYE19036MOR -GMB- and LABAE19004LLOB -DLN-). Furthermore, this work was supported by Breast Cancer Research Foundation (BCRF-19–08) -JA-. We are also grateful to the CERCA Programme (Generalitat de Catalunya) for institutional support. MGC and DS contracts are funded by CIBERONC, KG is a recipient of a PFIS fellowship (FI19/00188), RRB is recipient of a Ramón y Cajal grant (RyC-2016–19671) and DLN is recipient of a Miguel Servet grant (MS17/00063) (all partly supported by FEDER funds). We are also grateful to MD Anderson BIOBANK for providing tumor samples. The bank (reference # B.0000745) belongs to the National Registry of Biobanks coordinated by the Carlos III Health Institute

    Gasdermin-B promotes invasion and metastasis in breast cancer cells

    Full text link
    Gasdermin B (GSDMB) belongs to the Gasdermin protein family that comprises four members (GSDMA-D). Gasdermin B expression has been detected in some tumor types such as hepatocarcinomas, gastric and cervix cancers; and its overexpression has been related to tumor progression. At least four splicing isoforms of GSDMB have been identified, which may play differential roles in cancer. However, the implication of GSDMB in carcinogenesis and tumor progression is not well understood. Here, we uncover for the first time the functional implication of GSDMB in breast cancer. Our data shows that high levels of GSDMB expression is correlated with reduced survival and increased metastasis in breast cancer patients included in an expression dataset (>1,000 cases). We demonstrate that GSDMB is upregulated in breast carcinomas compared to normal breast tissue, being the isoform 2 (GSDMB-2) the most differentially expressed. In order to evaluate the functional role of GSDMB in breast cancer two GSDMB isoforms were studied (GSDMB-1 and GSDMB-2). The overexpression of both isoforms in the MCF7 breast carcinoma cell line promotes cell motility and invasion, while its silencing in HCC1954 breast carcinoma cells decreases the migratory and invasive phenotype. Importantly, we demonstrate that both isoforms have a differential role on the activation of Rac-1 and Cdc-42 Rho-GTPases. Moreover, our data support that GSMDB-2 induces a pro-tumorigenic and pro-metastatic behavior in mouse xenograft models as compared to GSDMB-1. Finally, we observed that although both GSDMB isoforms interact in vitro with the chaperone Hsp90, only the GSDMB-2 isoform relies on this chaperone for its stability. Taken together, our results provide for the first time evidences that GSDMB-2 induces invasion, tumor progression and metastasis in MCF7 cells and that GSDMB can be considered as a new potential prognostic marker in breast cancerThis work was supported by grants from the Spanish Ministry of Science and Innovation, MICINN (SAF2007-63075 and SAF2010-20175), AVON Foundation 2012, Comunidad de Madrid (S2010/BMD-2302), AECC network 2011, Instituto de Salud Carlos III (ISCIII) (PI13_00132) to GMB and Breast Network from ISCIII RD12036/0007 to AC. MHR has been funded by a predoctoral contract associated to SAF2007-63075 and now has a postdoc contract from S2010/BMD- 23. DS and PGS are funded by postdoc contracts from the AECC Scientific Foundation, AM is funded by a predoctoral fellowship from MECD; ACM is funded by ISCIII RD12036/0007. Dr HP’s work is supported by the Melanoma Research Alliance, Pediatric Oncology Experimental Therapeutics Investigators Consortium, The Nancy C. and Daniel P. Paduano Foundation, The Manning Foundation, NCI (U01 CA169538, RO1 CA169416-01) and the DoD (BC123187, BC12198

    Gasdermin B expression predicts poor clinical outcome in HER2-positive breast cancer

    Get PDF
    Altres ajuts: This work has been supported by the Community of Madrid (grant S2010/BMD-2303 to GMB), the Breast Cancer Research Foundation (BCRF) to JA. Alba Mota is a predoctoral student supported by a FPU fellowship (Spanish Ministry of Education, Culture and Sport). David Sarrio is a postdoctoral researcher funded by the AECC Scientific Foundation.Around, 30-40% of HER2-positive breast cancers do not show substantial clinical benefit from the targeted therapy and, thus, the mechanisms underlying resistance remain partially unknown. Interestingly, ERBB2 is frequently co-amplified and co-expressed with neighbour genes that may play a relevant role in this cancer subtype. Here, using an in silico analysis of data from 2,096 breast tumours, we reveal a significant correlation between Gasdermin B (GSDMB) gene (located 175 kilo bases distal from ERBB2) expression and the pathological and clinical parameters of poor prognosis in HER2-positive breast cancer. Next, the analysis of three independent cohorts (totalizing 286 tumours) showed that approximately 65% of the HER2-positive cases have GSDMB gene amplification and protein over-expression. Moreover, GSDMB expression was also linked to poor therapeutic responses in terms of lower relapse free survival and pathologic complete response as well as positive lymph node status and the development of distant metastasis under neoadjuvant and adjuvant treatment settings, respectively. Importantly, GSDMB expression promotes survival to trastuzumab in different HER2-positive breast carcinoma cells, and is associated with trastuzumab resistance phenotype in vivo in Patient Derived Xenografts. In summary, our data identifies the ERBB2 co-amplified and co-expressed gene GSDMB as a critical determinant of poor prognosis and therapeutic response in HER2-positive breast cancer

    Gasdermin B over-expression modulates HER2-targeted therapy resistance by inducing protective autophagy through Rab7 activation

    Get PDF
    Gasdermin B (GSDMB) over-expression promotes poor prognosis and aggressive behavior in HER2 breast cancer by increasing resistance to therapy. Decoding the molecular mechanism of GSDMB-mediated drug resistance is crucial to identify novel effective targeted treatments for HER2/GSDMB aggressive tumors. Different in vitro approaches (immunoblot, qRT-PCR, flow cytometry, proteomic analysis, immunoprecipitation, and confocal/electron microscopy) were performed in HER2 breast and gastroesophageal carcinoma cell models. Results were then validated using in vivo preclinical animal models and analyzing human breast and gastric cancer samples. GSDMB up-regulation renders HER2 cancer cells more resistant to anti-HER2 agents by promoting protective autophagy. Accordingly, the combination of lapatinib with the autophagy inhibitor chloroquine increases the therapeutic response of GSDMB-positive cancers in vitro and in zebrafish and mice tumor xenograft in vivo models. Mechanistically, GSDMB N-terminal domain interacts with the key components of the autophagy machinery LC3B and Rab7, facilitating the Rab7 activation during pro-survival autophagy in response to anti-HER2 therapies. Finally, we validated these results in clinical samples where GSDMB/Rab7/LC3B co-expression associates significantly with relapse in HER2 breast and gastric cancers. Our findings uncover for the first time a functional link between GSDMB over-expression and protective autophagy in response to HER2-targeted therapies. GSDMB behaves like an autophagy adaptor and plays a pivotal role in modulating autophagosome maturation through Rab7 activation. Finally, our results provide a new and accessible therapeutic approach for HER2/GSDMB + cancers with adverse clinical outcome. The online version contains supplementary material available at 10.1186/s13046-022-02497-w

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research

    Gasdermin-B promotes invasion and metastasis in breast cancer cells

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License.-- et al.Gasdermin B (GSDMB) belongs to the Gasdermin protein family that comprises four members (GSDMA-D). Gasdermin B expression has been detected in some tumor types such as hepatocarcinomas, gastric and cervix cancers; and its overexpression has been related to tumor progression. At least four splicing isoforms of GSDMB have been identified, which may play differential roles in cancer. However, the implication of GSDMB in carcinogenesis and tumor progression is not well understood. Here, we uncover for the first time the functional implication of GSDMB in breast cancer. Our data shows that high levels of GSDMB expression is correlated with reduced survival and increased metastasis in breast cancer patients included in an expression dataset (>1,000 cases). We demonstrate that GSDMB is upregulated in breast carcinomas compared to normal breast tissue, being the isoform 2 (GSDMB-2) the most differentially expressed. In order to evaluate the functional role of GSDMB in breast cancer two GSDMB isoforms were studied (GSDMB-1 and GSDMB-2). The overexpression of both isoforms in the MCF7 breast carcinoma cell line promotes cell motility and invasion, while its silencing in HCC1954 breast carcinoma cells decreases the migratory and invasive phenotype. Importantly, we demonstrate that both isoforms have a differential role on the activation of Rac-1 and Cdc-42 Rho-GTPases. Moreover, our data support that GSMDB-2 induces a pro-tumorigenic and pro-metastatic behavior in mouse xenograft models as compared to GSDMB-1. Finally, we observed that although both GSDMB isoforms interact in vitro with the chaperone Hsp90, only the GSDMB-2 isoform relies on this chaperone for its stability. Taken together, our results provide for the first time evidences that GSDMB-2 induces invasion, tumor progression and metastasis in MCF7 cells and that GSDMB can be considered as a new potential prognostic marker in breast cancer.This work was supported by grants from the Spanish Ministry of Science and Innovation, MICINN (SAF2007-63075 and SAF2010-20175), AVON Foundation 2012, Comunidad de Madrid (S2010/BMD-2302), AECC network 2011, Instituto de Salud Carlos III (ISCIII) (PI13_00132) to GMB and Breast Network from ISCIII RD12036/0007 to AC. MHR has been funded by a predoctoral contract associated to SAF2007-63075 and now has a postdoc contract from S2010/BMD-23. DS and PGS are funded by postdoc contracts from the AECC Scientific Foundation, AM is funded by a predoctoral fellowship from MECD; ACM is funded by ISCIII RD12036/0007. Dr HP’s work is supported by the Melanoma Research Alliance, Pediatric Oncology Experimental Therapeutics Investigators Consortium, The Nancy C. and Daniel P. Paduano Foundation, The Manning Foundation, NCI (U01 CA169538, RO1 CA169416-01) and the DoD (BC123187, BC121988).Peer Reviewe

    Analysis of cell homing and metastases of GSDMB transfectants by luciferase imaging.

    Get PDF
    <p>(A) Representative bioluminescence images of mice intracardially injected with luciferase-expressing MCF7-C (panels a, b, c), MCF7-G1 (panels d, e, f), and MCF7-G2 cells (panels g, h, j). Images were obtained at 0, 3 and 11 weeks after cell injection. The color scale represents the photon flux (photons per second) emitted from tumor cells. (B) Metastatic burden quantified by luciferin photon flux at 11 weeks after tumor injection (ovaries, bone, lungs and brain are shown) (C) Quantification of the percentage of organs with metastases. N = 5 mice per group. All experiments were performed in duplicate using 5 mice per experiment.</p
    corecore