17,097 research outputs found

    Stellar populations in the Carina region: The Galactic plane at l = 291

    Get PDF
    Previous studies of the Carina region have revealed its complexity and richness as well as a significant number of early-type stars. In many cases, these studies only concentrated on the central region or were not homogeneous. This latter aspect, in particular, is crucial because very different ages and distances for key clusters have been claimed in recent years. The aim of this work is to study in detail an area of the Galactic plane in Carina. We analyze the properties of different stellar populations and focus on a sample of open clusters and their population of YSOs and highly reddened early stars. We also studied the stellar mass distribution in these clusters and the possible scenario of their formation. Finally, we outline the Galactic spiral structure in this direction. We obtained photometric data for six young open clusters located in Carina at l = 291, and their adjacent stellar fields, which we complemented with spectroscopic observations of a few selected targets. We also culled additional information from the literature. Our results provide more reliable estimates of distances, color excesses, masses, and ages of the stellar populations in this direction. We estimate the basic parameters of the studied clusters and find that they identify two overdensities of young stellar populations. We find evidence of PMS populations inside them, with an apparent coeval stellar formation in the most conspicuous clusters. We also discuss apparent age and distance gradients in the direction NW-SE. We study the mass distributions of several clusters in the region. They consistently show a canonical IMF slope. We discover and characterise an abnormally reddened massive stellar population. Spectroscopic observations of ten stars of this latter population show that all selected targets were massive OB stars. Their location is consistent with the position of the Car-Sag spiral arm.Comment: 15 pages, 13 figure

    First clear evidence of quantum chaos in the bound states of an atomic nucleus

    Get PDF
    We study the spectral fluctuations of the 208^{208}Pb nucleus using the complete experimental spectrum of 151 states up to excitation energies of 6.206.20 MeV recently identified at the Maier-Leibnitz-Laboratorium at Garching, Germany. For natural parity states the results are very close to the predictions of Random Matrix Theory (RMT) for the nearest-neighbor spacing distribution. A quantitative estimate of the agreement is given by the Brody parameter ω\omega, which takes the value ω=0\omega=0 for regular systems and ω1\omega \simeq 1 for chaotic systems. We obtain ω=0.85±0.02\omega=0.85 \pm 0.02 which is, to our knowledge, the closest value to chaos ever observed in experimental bound states of nuclei. By contrast, the results for unnatural parity states are far from RMT behavior. We interpret these results as a consequence of the strength of the residual interaction in 208^{208}Pb, which, according to experimental data, is much stronger for natural than for unnatural parity states. In addition our results show that chaotic and non-chaotic nuclear states coexist in the same energy region of the spectrum.Comment: 9 pages, 1 figur

    Coulomb blockade without potential barriers

    Full text link
    We study transport through a strongly correlated quantum dot and show that Coulomb blockade can appear even in the presence of perfect contacts. This conclusion arises from numerical calculations of the conductance for a microscopic model of spinless fermions in an interacting chain connected to each lead via a completely open channel. The dependence of the conductance on the gate voltage shows well defined Coulomb blockade peaks which are sharpened as the interaction strength is increased. Our numerics is based on the embedding method and the DMRG algorithm. We explain the emergence of Coulomb blockade with perfect contacts by a reduction of the effective coupling matrix elements between many-body states corresponding to successive particle numbers in the interacting region. A perturbative approach, valid in the strong interaction limit, yields an analytic expression for the interaction-induced suppression of the conductance in the Coulomb blockade regime.Comment: Fixed problems with eps figure

    Optimization of soliton ratchets in inhomogeneous sine-Gordon systems

    Get PDF
    Unidirectional motion of solitons can take place, although the applied force has zero average in time, when the spatial symmetry is broken by introducing a potential V(x)V(x), which consists of periodically repeated cells with each cell containing an asymmetric array of strongly localized inhomogeneities at positions xix_{i}. A collective coordinate approach shows that the positions, heights and widths of the inhomogeneities (in that order) are the crucial parameters so as to obtain an optimal effective potential UoptU_{opt} that yields a maximal average soliton velocity. UoptU_{opt} essentially exhibits two features: double peaks consisting of a positive and a negative peak, and long flat regions between the double peaks. Such a potential can be obtained by choosing inhomogeneities with opposite signs (e.g., microresistors and microshorts in the case of long Josephson junctions) that are positioned close to each other, while the distance between each peak pair is rather large. These results of the collective variables theory are confirmed by full simulations for the inhomogeneous sine-Gordon system

    Late time tails of the massive vector field in a black hole background

    Full text link
    We investigate the late-time behavior of the massive vector field in the background of the Schwarzschild and Schwarzschild-de Sitter black holes. For Schwarzschild black hole, at intermediately late times the massive vector field is represented by three functions with different decay law Ψ0t(+3/2)sinmt\Psi_{0} \sim t^{-(\ell + 3/2)} \sin{m t}, Ψ1t(+5/2)sinmt\Psi_{1} \sim t^{-(\ell + 5/2)} \sin{m t}, Ψ2t(+1/2)sinmt\Psi_{2} \sim t^{-(\ell + 1/2)} \sin{m t}, while at asymptotically late times the decay law Ψt5/6sin(mt)\Psi \sim t^{-5/6} \sin{(m t)} is universal, and does not depend on the multipole number \ell. Together with previous study of massive scalar and Dirac fields where the same asymptotically late-time decay law was found, it means, that the asymptotically late-time decay law t5/6sin(mt)\sim t^{-5/6} \sin{(m t)} \emph{does not depend} also \emph{on the spin} of the field under consideration. For Schwarzschild-de Sitter black holes it is observed two different regimes in the late-time decay of perturbations: non-oscillatory exponential damping for small values of mm and oscillatory quasinormal mode decay for high enough mm. Numerical and analytical results are found for these quasinormal frequencies.Comment: one author and new material are adde

    Intensification of oxidation capacity using chloroalkanes as additives in hydrodynamic and acoustic cavitation reactors

    Get PDF
    The effect of the presence and absence of the chloroalkanes, dichloromethane (CH2Cl2), chloroform (CHCl3) and carbon tetrachloride (CCl4) on the extent of oxidation of aqueous I- to I3- has been investigated in (a) a liquid whistle reactor (LWR) generating hydrodynamic cavitation and (b) an ultrasonic probe, which produces acoustic cavitation. The aim has been to examine the intensification achieved in the extent of oxidation due to the generation of additional free radicals/oxidants in the reactor as a result of the presence of chloroalkanes. It has been observed that the extent of increase in the oxidation reaction is strongly dependent on the applied pressure in the case of the LWR. Also, higher volumes of the chloroalkanes favour the intensification and the order of effectiveness is CCl4> CHCl3 > CH2Cl2. However, the results with the ultrasonic probe suggest that an optimum concentration of CH2Cl2 or CHCl3 exists beyond which there is little increase in the extent of observed intensification. For CCl4, however, no such optimum concentration was observed and the extent of increase in the rates of oxidation reaction rose with the amount of CCl4 added. Stage wise addition of the chloroalkanes was found to give marginally better results in the case of the ultrasonic probe as compared to bulk addition at the start of the run. Although CCl4 is the most effective, its toxicity and carcinogenicity may mean that CH2Cl2 and CHCl3 offer a safer viable alternative and the present work should be useful in establishing the amount of chloroalkanes required for obtaining a suitable degree of intensification

    Internal mode mechanism for collective energy transport in extended systems

    Get PDF
    We study directed energy transport in homogeneous nonlinear extended systems in the presence of homogeneous ac forces and dissipation. We show that the mechanism responsible for unidirectional motion of topological excitations is the coupling of their internal and translation degrees of freedom. Our results lead to a selection rule for the existence of such motion based on resonances that explains earlier symmetry analysis of this phenomenon. The direction of motion is found to depend both on the initial and the relative phases of the two harmonic drivings, even in the presence of noise.Comment: Final version, to appear in Physical Review Letter

    Soliton ratchets in homogeneous nonlinear Klein-Gordon systems

    Get PDF
    We study in detail the ratchet-like dynamics of topological solitons in homogeneous nonlinear Klein-Gordon systems driven by a bi-harmonic force. By using a collective coordinate approach with two degrees of freedom, namely the center of the soliton, X(t)X(t), and its width, l(t)l(t), we show, first, that energy is inhomogeneously pumped into the system, generating as result a directed motion; and, second, that the breaking of the time shift symmetry gives rise to a resonance mechanism that takes place whenever the width l(t)l(t) oscillates with at least one frequency of the external ac force. In addition, we show that for the appearance of soliton ratchets, it is also necesary to break the time-reversal symmetry. We analyze in detail the effects of dissipation in the system, calculating the average velocity of the soliton as a function of the ac force and the damping. We find current reversal phenomena depending on the parameter choice and discuss the important role played by the phases of the ac force. Our analytical calculations are confirmed by numerical simulations of the full partial differential equations of the sine-Gordon and ϕ4\phi^4 systems, which are seen to exhibit the same qualitative behavior. Our results are in agreement with recent experimental work on dissipation induced symmetry breaking.Comment: Minor corrections, several references added, accepted for publication in Chao

    Variation of Creep Resistance in Ferritic Steels by a Heat Treatment

    Get PDF
    AbstractIn the power plants, boiler pipes and heaters, are made with ferritic steels low alloy. These steels have a microstructure with fine stable alloy carbides that impede the movement of the dislocations, however it is inevitable that during long periods of service or very critical conditions, microstructural changes occur that are responsible for the loss of material strength. In the past decades the 1Cr-0.5Mo steel was used, but it has been replaced by ferritc steels containing higher amounts of Cr and Mo, with the addition of other micro alloying elements such as niobium, titanium and vanadium to increase their mechanical strength. The objective of this work is to study the creep behavior of 1Cr-0.5Mo steel and to compare its strength when prior to service it is subjected to different heat treatments that improve its conditions of service, as that is beneficial from the economical point of view. Tensile creep tests were performed at a temperature range between 843 and 893K, and applied stresses between 131 and 205MPa in the material reception conditions comparing its behavior with others that previously has undergone different heat treatments. From experimental data the characteristic parameters were calculated such as the creep coefficient of stress and activation energy. The microstructural variation of the original material was also analyzed, after heat treatment and creep samples were characterized by optical microscopy, scanning electron microscopy and analysis by dispersive X- ray spectroscopy, to evaluate the effects of kinetics changes occurred in the precipitated phases and the presence of microstructural damage, such as nucleation, growth and coalescence of micro cavities. The microhardness of the phases present in the different samples were also measured
    corecore