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We study directed energy transport in homogeneous nonlinear extended systems in the presence of
homogeneous ac forces and dissipation. We show that the mechanism responsible for unidirectional
motion of topological excitations is the coupling of their internal and translation degrees of freedom.
Our results lead to a selection rule for the existence of such motion based on resonances that explain
earlier symmetry analysis of this phenomenon. The direction of motion is found to depend both on the
initial and the relative phases of the two harmonic drivings, even in the presence of noise.
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jecture had no rigorous support; rather, it was based on and unperturbed width. Equation (2) can be solved
One intriguing phenomenon that is receiving much
attention recently is net directed motion induced by
zero average forces. Originally motivated by stochastic
models of biomolecular (brownian) motors [1], determin-
istic ratchetlike systems [2,3] are being intensively
studied, chiefly because of their many potential techno-
logical applications [4]. Many such models consist of one
or two particles on a periodic, asymmetric potential and a
periodic force (rocking ratchet [1]). Later, the investiga-
tion was generalized to systems with many interacting
particles, from noisy soliton-bearing systems [5,6] to
other spatially extended (stochastic and deterministic,
overdamped and underdamped) systems, both theoreti-
cally [7] and from a more applied [8] viewpoint.

Among this class of problems, net transport in homo-
geneous extended systems driven by homogeneous ac
forces is particularly interesting. A paradigmatic example
is the ac driven, damped sine-Gordon (sG) equation:

�tt ��xx � sin��� � ���t � f�t�: (1)

A symmetry analysis, proposed for one-particle systems
in [3] and extended to this problem [9,10], indicated that a
directed energy current appeared if f�t� broke the sym-
metry f�t� � �f�t� T=2�, T being the period of the
external driving. One such choice is f�t� � 	1 sin�
t�

0� � 	2 sin�m
t� 
0 � �� ([9,10] with 
0 � 
=2), a
case for which numerical simulations of the sG equation
confirmed the symmetry analysis results. In what follows,
we will refer to 
0 as the initial phase and to � as the
relative phase. Transport required a nonzero topological
charge, implying the existence of sG solitons (kinks) in
the system. In this respect, we stress that kink-mediated
transport is impossible with only one harmonic for any
value of the damping coefficient � [11]. It was argued in
[10] that the observed rectification arises from the non-
adiabatic excitation of internal kink modes and their
interaction with the translational kink motion. This con-
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plots of sG soliton evolution and on the failure of a
collective coordinate (CC) approach [12] with one degree
of freedom, which assumed that sG solitons behave simi-
lar to rigid particles. An attempt to include the width
degree of freedom has been recently presented in [13],
where it was concluded that the directed energy current
vanishes unless the width of the kink, l�t�, is a dynamical
variable. However, this condition is only a necessary one:
l�t� is a dynamical variable in the one-harmonic case but
the kink velocity is zero for any value of the damping as
already mentioned [11]. Another point not accounted for
in [13] is the connection between the internal mode
mechanism and the symmetry analysis, which also pro-
hibits motion in other cases where l�t� is a dynamical
variable. Therefore, the reasons for the phenomena ob-
served in [9,10] remained largely obscure.

In this Letter, a different CC approach allows us to
identify the mechanism through which the width oscil-
lation drives the kink and its relation with the symmetry
conditions. Furthermore, our theory predicts, and nu-
merical simulations of Eq. (1) confirm, that the direction
of motion depends on the initial phase of the driving,
even in the presence of additive noise. Our CC theory is
based on an ansatz, proposed in [14], for the perturbed
kink depending on two CC, X�t� and l�t� (respectively,
position and width of the kink). It is not difficult to show
[14–16] that the dynamics of these two CC is given by

dP
dt

� ��P� qf�t�; (2)

_ll2 � 2l�ll� 2�l _ll � 	2
Rl

2

�
1�

P2

M2
0

�
�

1

�
; (3)

where the momentum P�t� � M0l0 _XX=l�t�, 	R �
1=�

����
�

p
l0� with � � 
2=12 is the so-called Rice’s fre-

quency, and M0 � 8, q � 2
, and l0 � 1 are, respec-
tively, the dimensionless kink mass, topological charge,
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exactly, and in the large time limit (t 	 ��1) yields

P�t� � �
���
	

p

 a1 sin�
t� 
0 � �1�

� a2 sin�m
t� 
0 � �� �2��;

where 	 is merely a rescaling parameter in the per-
turbation expansion, to be determined later; �1 �

arctan�
=��, �2� arctan�m
=��, a1�q	1=
����������������������
	��2�
2�

p
,

and a2 � q	2=
������������������������������
	��2 �m2
2�

p
: As we are interested in
TABLE I. Harmonic content of the first contributions to the
perturbative expansion of l�t�.
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the damped (� � 0) case and Eq. (3) cannot be solved in
that case [15,16], we will study it by a perturbative
expansion, l�t� � l0 � 	l1�t� � 	2l2�t� � � � � . At order
O�	�, we obtain

�ll 1�t� � � _ll1�t� �	2
Rl1�t� � �	2

RP
2�t�l0=2	M2

0: (4)

The key point is that, by substituting the expression of
P�t� into (4), we see that the equation for l1�t� contains
harmonics of frequencies 2
, 2m
, and �m
 1�
; i.e.,
�ll1�t� � � _ll1�t� �	2
Rl1�t� �A1 � A2 cos�2
t� 2
0 � 2�1� � A3 cos�2m
t� 2
0 � 2�� 2�2�

� A4 cos
�m� 1�
t� �� ��2 � �1�� � A4 cos
�m� 1�
t� 2
0 � �� ��2 � �1��;

where A1 � �A2 � A3, A2 � 	Ra
2
1=4

����
�

p
M2

0, A3 � 	Ra
2
2=4

����
�

p
M2

0, and A4 � �	Ra1a2=2
����
�

p
M2

0. After transients
elapse, we find

l1�t� �
A1

	2
R

�
A2 sin�2
t� 2
0 � 2�1 � ~��2�����������������������������������������������

�	2
R � 4
2�2 � 4�2
2

q �
A3 sin�2m
t� 2
0 � 2�� 2�2 � ~��2m�����������������������������������������������������������

�	2
R � 4m2
2�2 � 4m2�2
2

q

�
A4 sin
�m� 1�
t� �� ��2 � �1� � ~��m�1�������������������������������������������������������������������������������


	2
R � �m� 1�2
2�2 � �2�m� 1�2
2

q �
A4 sin
�m� 1�
t� 2
0 � �� ��2 � �1� � ~��m�1�������������������������������������������������������������������������������


	2
R � �m� 1�2
2�2 � �2�m� 1�2
2

q ; (5)

where ~��m � arctan
�	2
R �m2
2�=m�
�. A cumbersome but otherwise trivial calculation yields the harmonics con-

tained in l2�t�, collected in Table I.
Next, we need to compute the average velocity over one period T � 2
=
: In the CC approach, we use the definition

of the momentum and find

h _XX�t�i �
1

T

Z T

0

P�t�l�t�
M0l0

dt: (6)

At O�	0�, the averages hP�t�i and h _XX0�t�i vanish trivially; therefore, net kink motion can arise only in next order. By
straightforward calculations from Eqs. (5) and (6), we find for m � 2 that, for large enough times,

	h _XX1i �
q3	2

R	
2
1	2

8M3
0��

2 � 
2�
��������������������
�2 � 4
2

p
�
2 cos

0 � �� ��2 � 2�1� � ~��1������������������������������������������

�	2
R � 
2�2 � �2
2

q �
cos

0 � �� ��2 � 2�1� � ~��2�����������������������������������������������

�	2
R � 4
2�2 � 4�2
2

q
�
: (7)
From Eq. (7), we see that for 	 to be small the prefactor on
the right-hand side has to be much smaller than 1. A
definite, verifiable prediction from this asymptotic ex-
pression is the existence of a nonzero velocity for m �
2, with a sinusoidal dependence on 
0 and �. This means
that the velocity depends on both the initial and the
relative phases; indeed, by letting 
0 � 
t0 in Eq. (1)
and changing variables to t0 � t� t0, it can be immedi-
ately seen that an initial phase 
0 is equivalent to a
relative phase �0 � �� �m� 1�
0 for a kink with its
center shifted to x0 � Vt0. The dependence of the velocity
on � agrees with (and explains) [9,10], whereas the de-
pendence on 
0 is a totally new result. Nevertheless, these
analytical results as well as the numerical simulations we
present below strongly support the present conclusion.

For the case m � 3, the average velocity is zero at all
orders, a result confirmed by direct numerical simulation
of the full sG Eq. (1) as we will see below. The reason can
be understood by looking at Table I: For m � 3, the
frequencies of the ac force (or the momentum) are odd
harmonics (
 and 3
), whereas the width of the kink
oscillates only with even harmonics (2n
, n 2 N). This
leads us to our main conclusion, namely, the mechanism
for the appearance of net motion and the corresponding
selection rules. Equations (2) and (3) show that the force
acts on the kink width through P2�t�, whereas P�t� itself is
in turn inversely proportional to l�t�. This coupling is the
234102-2
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FIG. 2. Dependence of the kink velocity on the initial phase
for relative phase � � 
=2 in the deterministic (D � 0, empty
circles) and the stochastic (D � 0:03, diamonds) cases. Other
parameters are as in Fig. 1.
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responsible for the net kink motion but, for it to be
actually possible, the harmonic content of the effective
force P2�t� acting on the width degree of freedom must be
able to resonate with it. This is evident from Eq. (6), in
which the integral is nonzero only if l�t� contains at least
one of the harmonics of P�t�. It is important to realize that
this condition is much more restrictive than that found in
[13], where only the necessity of l�t� being a dynamic
variable was pointed out. We have just seen that this is
indeed necessary, but that additional, crucial resonance
conditions have to be fulfilled. Interestingly, our theory
shows also that dissipation can change or even revert the
kink velocity [see Eq. (7)] in agreement with the numeri-
cal results in [9,10]. A more detailed discussion of this
point is forthcoming [17].

These predictions from the CC approximation must be
confirmed by a numerical solution of the full partial
differential Eq. (1). We do this by using the Strauss-
Vázquez scheme [18], on systems of length L � 100,
1000, with steps �t � 0:01, �x � 0:1, free boundary
conditions, and a kink at rest as an initial condition.
Instead of the perturbative expressions (which are only
qualitatively correct unless 	 � 1), to assess the validity
of our theory we numerically integrate Eq. (3) and the
equation for the velocity obtained from the expression of
P�t� [Eq. (2)] with a fourth-order Runge-Kutta method.
Our main results are shown in Figs. 1–3; they fully
confirm the accuracy, even quantitative, of our approach.
Figure 1 exhibits clearly the sinusoidal dependence of the
velocity as a function of the initial phase. The dependence
on � is also seen as a simple shift when changing from
� � 0 to � � 
=2. The agreement with the CC results is
perfect. As a further check of the robustness of this de-
pendence, following [9] we have simulated Eq. (1) with
an additional additive Gaussian white noise term with
variance D. While one could, in principle, think that
this noise would suppress the initial phase dependence,
Fig. 2 shows that the opposite is the case: The noise
enhances the dependence on the initial phase, increasing
the maximum values of the velocity while keeping the
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FIG. 1. Dependence of the kink velocity on the initial phase.
Parameters are 	1 � 	2 � 0:2, � � 0:05, 
 � 0:1. Relative
phase � � 
=2: solid line, CC theory; filled circles, simulation
results. Relative phase � � 0: dashed line, CC theory; squares,
simulation results.
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same general sinusoidal dependence and the location
of the zeros. It is tempting to conclude from this plot that
the noise, at least if it is not very large (D � 1), assists
the process of energy transfer between the width and the
translation degrees of freedom, activating it. Finally,
Fig. 3 makes it clear that our main result, namely the
interpretation of the physics of the problem, is indeed
true, by showing the harmonic content of l�t� for m � 2
and 3. In this case, the agreement between our CC theory
and the full numerical simulation of Eq. (1) is indeed
impressive, and validates firmly our resonance criterion
for net kink motion. It is important to stress that the
present theory does not apply to the net motion found
for m � 3 in [10]. We have confirmed their result in our
simulations, which allowed us to realize that this is an
altogether different phenomenon: First, it appears only
above a (moderately large, 	i * 0:4) threshold amplitude,
and, second, it is induced by the kink wings, which are
highly distorted in the process yielding the CC picture
inappropriate (even kink-antikink pairs are created).

In conclusion, we have found that the symmetry con-
ditions set forth in [9,10] have their physical origin in the
mechanism of the directed motion: the indirect action of
the force through the coupling of the translational and
width degrees of freedom. To make net motion possible,
this indirect driving has to resonate with the available
frequencies for the width. This interpretation does not
contradict the nonexistence of internal modes in sG
kinks, shown in [16], because external forces can induce,
via excitation of certain phonons, behavior similar to the
one expected from an intrinsic internal mode [19,20].
The fact that a force with only one harmonic would not
drive the damped sG kink [11], and that two harmonics
are needed to simultaneously excite the width oscillations
and induce net motion, fits nicely in this picture. On the
other hand, this point raises the question as to the general-
ity of our results, in view of the fact that most kink-
bearing systems do have internal modes. To answer this
question, we have studied the same problem in the frame-
work of the �4 model, reaching the same conclusions
[17]: Indeed, the intrinsic internal mode of �4 kinks
234102-3
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FIG. 3. Discrete Fourier transform of the kink width. Upper
panel: m � 2; lower panel: m � 3. Solid line: amplitude mea-
sured in simulations. Dashed line: numerical integration of the
CC equations. Parameters are as in Fig. 1 for relative phase � �

=2 and initial phase 
0 � �2:5.
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makes the phenomenon even more noticeable, making us
confident on the wide applicability of this work.

Another important conclusion is the dependence of the
velocity on the initial phase 
0, not mentioned in earlier
work [9,10]. We note that this dependence allows much
more flexibility in controlling the kink velocity, provid-
ing an alternative to the use of the relative phase sug-
gested earlier. On the other hand, this may have important
consequences for applications as a way of separating, e.g.,
fluxons in long Josephson junctions [8]. Interestingly,
such superconducting devices provide the best possible
laboratory to verify our results. This experimental con-
firmation is crucial in order to ascertain their applicabil-
ity. Given the accuracy with which the sG equation
describes long Josephson junctions, and the fact that an
external force such as the one proposed in this and earlier
works [9,10] is easy to implement, we hope that the
corresponding measurements will soon be carried out.
A conclusive, positive verification of our theory would
yield the picture we provide here very useful in that and
related contexts.
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[20] J. A. González et al., Phys. Rev. E 65, 065601 (2002);

Chaos, Solitons & Fractals (to be published).
234102-4


