239 research outputs found

    The rise-time of type II supernovae

    Get PDF
    We investigate the early-time light-curves of a large sample of 223 type II supernovae (SNe) from the Sloan Digital Sky Survey and the Supernova Legacy Survey. Having a cadence of a few days and sufficient non-detections prior to explosion, we constrain rise-times, i.e. the durations from estimated first to maximum light, as a function of effective wavelength. At restframe g-band (4722A), we find a distribution of fast rise-times with median of (7.5+/-0.3) days. Comparing these durations with analytical shock models of Rabinak and Waxman (2013); Nakar and Sari (2010) and hydrodynamical models of Tominaga et al. (2009), which are mostly sensitive to progenitor radius at these epochs, we find a median characteristic radius of less than 400 solar radii. The inferred radii are on average much smaller than the radii obtained for observed red supergiants (RSG). Investigating the post-maximum slopes as a function of effective wavelength in the light of theoretical models, we find that massive hydrogen envelopes are still needed to explain the plateaus of SNe II. We therefore argue that the SN II rise-times we observe are either a) the shock cooling resulting from the core collapse of RSG with small and dense envelopes, or b) the delayed and prolonged shock breakout of the collapse of a RSG with an extended atmosphere or embedded within pre-SN circumstellar material.Fil: Gonzålez Gaitån, S.. Universidad de Chile; Chile. Millennium Institute of Astrophysics; ChileFil: Tominaga, N.. Konan University; JapónFil: Molina, J.. Universidad de Chile; ChileFil: Galbany, L.. Universidad de Chile; Chile. Millennium Institute of Astrophysics; ChileFil: Bufano, F.. Universidad Andres Bello; Chile. Millennium Institute of Astrophysics; ChileFil: Anderson, J. P. . European Southern Observatory; ChileFil: Gutierrez, C.. Universidad de Chile; Chile. Millennium Institute of Astrophysics; ChileFil: Förster, F.. Millennium Institute of Astrophysics; Chile. Universidad de Chile; ChileFil: Pignata, G.. Universidad Andres Bello; Chile. Millennium Institute of Astrophysics; ChileFil: Bersten, Melina Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Astrofísica de La Plata; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. University of Tokyo; JapónFil: Howell, D. A. . Las Cumbres Observatory Global Telescope Network; Estados Unidos. University of California; Estados UnidosFil: Sullivan, M.. University of Southampton; Reino UnidoFil: Carlberg, R.. University Of Toronto; CanadåFil: De Jaeger, T. . Universidad de Chile; Chile. Millennium Institute of Astrophysics; ChileFil: Hamuy, M.. Universidad de Chile; Chile. Millennium Institute of Astrophysics; ChileFil: Baklanov, P. V. . Novosibirsk State University; RusiaFil: Blinnikov, S. I. . University of Tokyo; Japó

    The Role of pH Fronts in Reversible Electroporation

    Get PDF
    We present experimental measurements and theoretical predictions of ion transport in agar gels during reversible electroporation (ECT) for conditions typical to many clinical studies found in the literature, revealing the presence of pH fronts emerging from both electrodes. These results suggest that pH fronts are immediate and substantial. Since they might give rise to tissue necrosis, an unwanted condition in clinical applications of ECT as well as in irreversible electroporation (IRE) and in electrogenetherapy (EGT), it is important to quantify their extent and evolution. Here, a tracking technique is used to follow the space-time evolution of these pH fronts. It is found that they scale in time as , characteristic of a predominantly diffusive process. Comparing ECT pH fronts with those arising in electrotherapy (EChT), another treatment applying constant electric fields whose main goal is tissue necrosis, a striking result is observed: anodic acidification is larger in ECT than in EChT, suggesting that tissue necrosis could also be greater. Ways to minimize these adverse effects in ECT are suggested

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 60∘60^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law E−γE^{-\gamma} with index Îł=2.70±0.02 (stat)±0.1 (sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25 (stat)−1.2+1.0 (sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    The rise-time of Type II supernovae

    Get PDF
    We investigate the early-time light curves of a large sample of 223 Type II supernovae (SNe II) from the Sloan Digital Sky Survey and the Supernova Legacy Survey. Having a cadence of a few days and sufficient non-detections prior to explosion, we constrain risetimes, i.e. the durations from estimated first to maximum light, as a function of effective wavelength. At rest-frame g' band (λeff = 4722 Å), we find a distribution of fast rise-times with median of (7.5 ± 0.3) d. Comparing these durations with analytical shock models of Rabinak &Waxman and Nakar & Sari, and hydrodynamical models of Tominaga et al., which are mostly sensitive to progenitor radius at these epochs, we find a median characteristic radius of less than 400 solar radii. The inferred radii are on average much smaller than the radii obtained for observed red supergiants (RSG). Investigating the post-maximum slopes as a function of effective wavelength in the light of theoretical models, we find that massive hydrogen envelopes are still needed to explain the plateaus of SNe II. We therefore argue that the SN II rise-times we observe are either (a) the shock cooling resulting from the core collapse of RSG with small and dense envelopes, or (b) the delayed and prolonged shock breakout of the collapse of an RSG with an extended atmosphere or embedded within pre-SN circumstellar material.Instituto de AstrofĂ­sica de La PlataFacultad de Ciencias AstronĂłmicas y GeofĂ­sica

    The global distribution and environmental drivers of the soil antibiotic resistome

    Get PDF
    Background: Little is known about the global distribution and environmental drivers of key microbial functional traits such as antibiotic resistance genes (ARGs). Soils are one of Earth’s largest reservoirs of ARGs, which are integral for soil microbial competition, and have potential implications for plant and human health. Yet, their diversity and global patterns remain poorly described. Here, we analyzed 285 ARGs in soils from 1012 sites across all continents and created the first global atlas with the distributions of topsoil ARGs. Results: We show that ARGs peaked in high latitude cold and boreal forests. Climatic seasonality and mobile genetic elements, associated with the transmission of antibiotic resistance, were also key drivers of their global distribution. Dominant ARGs were mainly related to multidrug resistance genes and efflux pump machineries. We further pinpointed the global hotspots of the diversity and proportions of soil ARGs. Conclusions: Together, our work provides the foundation for a better understanding of the ecology and global distribution of the environmental soil antibiotic resistome.This project received funding from the European Union’s Horizon 2020 research and innovation program under the Marie SkƂodowska-Curie grant agreement 702057 (CLIMIFUN), a Large Research Grant from the British Ecological Society (agreement no. LRA17\1193; MUSGONET), and from the European Research Council (ERC grant agreement no. 647038, BIODESERT). M. D. B. was also supported by a Ramón y Cajal grant (RYC2018-025483-I). M.D-B. also acknowledges support from the Spanish Ministry of Science and Innovation for the I+D+i project PID2020-115813RA-I00 funded by MCIN/AEI/10.13039/501100011033. M.D-B. is also supported by a project of the Fondo Europeo de Desarrollo Regional (FEDER) and the Consejería de Transformación Económica, Industria, Conocimiento y Universidades of the Junta de Andalucía (FEDER Andalucía 2014-2020 Objetivo temático “01 - Refuerzo de la investigación, el desarrollo tecnológico y la innovación”) associated with the research project P20_00879 (ANDABIOMA). FTM acknowledges support from Generalitat Valenciana (CIDEGENT/2018/041). J. Z. H and H. W. H. are financially supported by Australian Research Council (DP210100332). We also thank the project CTM2015-64728-C2-2-R from the Ministry of Science of Spain. C. A. G. and N. E. acknowledge funding by the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, funded by the German Research Foundation (FZT 118). TG was financially supported by Slovenian Research Agency (P4-0107, J4-3098 and J4-4547)

    In Vitro and In Vivo High-Throughput Assays for the Testing of Anti-Trypanosoma cruzi Compounds

    Get PDF
    The treatment of Trypanosoma cruzi infection (the cause of human Chagas disease) remains a significant challenge. Only two drugs, both with substantial toxicity, are available and the efficacy of these dugs is often questioned – in many cases due to the limitations of the methods for assessing efficacy rather than to true lack of efficacy. For these reasons relatively few individuals infected with T. cruzi actually have their infections treated. In this study, we report on innovative methods that will facilitate the discovery of new compounds for the treatment of T. cruzi infection and Chagas disease. Utilizing fluorescent and bioluminescent parasite lines, we have developed in vitro tests that are reproducible and facile and can be scaled for high-throughput screening of large compound libraries. We also validate an in vivo screening test that monitors parasite replication at the site of infection and determines the effectiveness of drug treatment in less than two weeks. More importantly, results in this rapid in vivo test show strong correlations with those obtained in long-term (e.g. 40 day or more) treatment assays. The results of this study remove one of the obstacles for identification of effective and safe compounds to treat Chagas disease
    • 

    corecore