1,148 research outputs found

    Oulun luonnon monimuotoisuus, VILMO - Viheralueverkosto ja luonnon monimuotoisuus

    Get PDF

    Transparent planning for biodiversity and development in the urban fringe

    Get PDF
    In Australia, over 50% of threatened species occur within the urban fringe and accelerating urbanization is now a key threat. Biodiversity near and within urban areas brings much social benefit but its maintenance involves complex trade-offs between competing land uses. Urban design typically views biodiversity as a development constraint, not a value to be enhanced into the future. We argue that decisions could be more transparent and systematic and we demonstrate that efficient development solutions can be found that avoid areas important for biodiversity. We present a case study in the context of land use change across the city of Wyndham, a local Government west of Melbourne, Australia. We use reserve design tools in a novel way to identify priority development sites, based on a synthesis of ecological, social and economic data. Trade-offs between biodiversity conservation and other key development objectives and constraints (transport planning, flood risk and food production) are quantified. The analysis can be conducted dynamically with visually compelling output, facilitating more transparent, efficient and democratically derived urban planning solutions. We suggest that government agencies could adopt similar approaches to identify efficient planning solutions for both biodiversity and development in urban environments

    A Genetic Algorithm solver for pest management control in Island systems

    Get PDF
    Island conservation management is a truly multidisciplinary problem that requires considerable knowledge of the characteristics of the ecosystem, species and their interactions. Nevertheless, this can be translated into an optimisation problem. Essentially, within a limited budget, a manager needs to select the conservation actions according to expected payoffs (in terms of protecting or restoring desired species) versus cost (the amount of resources/money) required for the actions. This paper presents the problem in terms of a knapsack formulation and develops optimisation techniques to solve it. From this, decision-support software is being developed, tailored to meet the needs of pest control on islands for conservation managers. The solver uses a Genetic Algorithm and incorporates a simplified model of the problem. The solver derives strategies that reduce the number of threats, allowing the preservation of desired species. However, the problem model needs further refinement to derive truly realistic options for conservation managers

    Balancing profitability of energy production, societal impacts and biodiversity in offshore wind farm design

    Get PDF
    The global demand for renewable energy is on the rise. Expansion of onshore wind energy is in many parts of the world limited by societal acceptance, and also ecological impacts are a concern. Here, pragmatic methods are developed for the integration of high-dimensional spatial data in offshore wind energy planning. Over 150 spatial data layers are created, which either oppose or support offshore wind energy development, and represent ecological, societal, and economic factors. The method is tested in Finland, where interest in developing offshore wind energy is growing. Analyses were done using a spatial prioritization approach, originally developed for the prioritization of high dimensional ecological data, and rarely used in planning offshore wind energy. When all criteria are integrated, it is possible to find a balanced solution where offshore wind farms cause little disturbance to biodiversity and society, while at the same time yielding high profitability for wind energy production. Earlier proposed areas for offshore wind farms were also evaluated. They were generally well suited for wind power, with the exception of a couple of areas with comparatively high environmental impacts. As an outcome, new areas well suited for large scale wind power deployment were recognized, where construction costs would be moderate and disturbance to biodiversity, marine industries and people limited. A novel tradeoff visualization method was also developed for the conflicts and synergies of offshore energy deployment, which could ease the dialogue between different stakeholders in a spatial planning context. Overall, this study provides a generic and transparent approach for well-informed analysis of offshore wind energy development potential when conflict resolution between biodiversity, societal factors and economic profits is needed. The proposed approach is replicable elsewhere in the world. It is also structurally suitable for the planning of impact avoidance and conflict resolution in the context of other forms of construction or resource extraction.Peer reviewe

    Short-term studies underestimate 30-generation changes in a butterfly metapopulation

    Get PDF
    Most studies of rare and endangered species are based on work carried out within one generation, or over one to a few generations of the study organism. We report the results of a study that spans 30 generations (years) of the entire natural range of a butterfly race that is endemic to 35 km2 of north Wales, UK. Short-term studies (surveys in single years and dynamics over 4 years) of this system led to the prediction that the regional distribution would be quite stable, and that colonization and extinction dynamics would be relatively unimportant. However, a longer-term study revealed unexpectedly high levels of population turnover (local extinction and colonization), affecting 18 out of the 20 patches that were occupied at any time during the period. Modelling the system (using the 'incidence function model' (IFM) for metapopulations) also showed higher levels of colonization and extinction with increasing duration of the study. The longer-term dynamics observed in this system can be compared, at a metapopulation level, with the increased levels of variation observed with increasing time that have been observed in single populations. Long-term changes may arise from local changes in the environment that make individual patches more or less suitable for the butterfly, or from unusual colonization or extinction events that take metapopulations into alternative states. One implication is that metapopulation and population viability analyses based on studies that cover only a few animal or plant generations may underestimate extinction threats

    Discovery of a New Deeply Eclipsing SU UMa-Type Dwarf Nova, IY UMa (= TmzV85)

    Full text link
    We discovered a new deeply eclipsing SU UMa-type dwarf nova, IY UMa, which experienced a superoutburst in 2000 January. Our monitoring revealed two distinct outbursts, which suggest a superoutburst interval of ~800 d, or its half, and an outburst amplitude of 5.4 mag. From time-series photometry during the superoutburst, we determined a superhump and orbital period of 0.07588 d and 0.0739132 d, respectively.Comment: 5 pages, 3 figures, accepted by PASJ lette

    Afterglow upper limits for four short duration, hard spectrum gamma-ray bursts

    Get PDF
    We present interplanetary network localization, spectral, and time history information for four short-duration, hard spectrum gamma-ray bursts, GRB000607, 001025B, 001204, and 010119. All of these events were followed up with sensitive radio and optical observations (the first and only such bursts to be followed up in the radio to date), but no detections were made, demonstrating that the short bursts do not have anomalously intense afterglows. We discuss the upper limits, and show that the lack of observable counterparts is consistent both with the hypothesis that the afterglow behavior of the short bursts is like that of the long duration bursts, many of which similarly have no detectable afterglows, as well as with the hypothesis that the short bursts have no detectable afterglows at all. Small number statistics do not allow a clear choice between these alternatives, but given the present detection rates of various missions, we show that progress can be expected in the near future.Comment: 19 pages, 4 figures; Revised version, accepted by the Astrophysical Journa

    Revisiting the minimum set cover, the maximal coverage problems and a maximum benefit area selection problem to make climate‐change‐concerned conservation plans effective

    Get PDF
    1. Informed decisions for the selection of protected areas (PAs) are grounded in two general problems in Operations Research: the minimum set covering problem (minCost), where a set of ecological constraints are established as conservation targets and the minimum cost PAs are found, and the maximal coverage problem (maxCoverage) where the constraint is uniquely economic (i.e., a fixed budget) and the goal is to maximize the number of species having conservation targets adequately covered. 2. We adjust minCost and maxCoverage to accommodate the dynamic effects of climate change on species’ ranges. The selection of sites is replaced by the selection of time-ordered sequences of sites (climate change corridors), and an estimate of the persistence of each species in corridors is calculated according to the expected suitability of each site in the respective time period and the capacity of species to disperse between consecutive sites along corridors. In these problems, conservation targets are expressed as desired (and attainable) species persistence levels. We also introduce a novel problem (minShortfall) that combines minCost and maxCoverage. Unlike these two problems, minShortfall allows persistence targets to be missed and minimizes the sum of those gaps (i.e., target shortfalls), subject to a limited budget. 3. We illustrate the three problems with a case study using climatic suitability estimates for ten mammal species in the Iberian Peninsula under a climate change scenario until 2080. We compare solutions of the three problems with respect to species persistence and PA costs, under distinct settings of persistence targets, number of target-fulfilled species, and budgets. The solutions from different problems differed with regard to the areas to prioritize, their timings and the species whose persistence targets were fulfilled. This analysis also allowed identifying groups of species sharing corridors in optimal solutions, thus allowing important financial savings in site protection. 4. We suggest that enhancing species persistence is an adequate approach to cope with habitat shifts due to climate change. We trust the three problems discussed can provide complementary and valuable support for planners to anticipate decisions in order that the negative effects of climate change on species’ persistence are minimized

    Variation of the web tension at the roll change in the printing press

    Get PDF
    Rapid changes of the web tension take place at the roll change in the printing press. Variations in the machine direction depend on the tension control system and variation in the cross direction is strongly affected by paper and roll properties. The web tension profile can be measured with a single sensor scanning across the web or with a special beam equipped with several sensors. In this paper findings from the studies carried out with different tension measurement systems are presented. In the long-term study the effect of paper machine reel position as well as the changes within the roll and between the rolls on the web tension profile are underlined
    corecore