227 research outputs found

    Ocean mixing and polynyas at Maud Rise, Weddell Sea

    Get PDF
    The Weddell Sea Polynya is an intermittent, ice free area in the marginal ice zone with an extent of up to 350 000 km². It was first observed by satellites in the winter seasons of 1974-1976. In 2016 and 2017, an open-ocean polynya opened over the Maud Rise oceanic plateau in the eastern Weddell Sea, which was the largest since the 70’s. Polynyas have an important role in ocean-atmosphere heat exchange, deep water and sea-ice formation. A deep layer of relatively warm Circumpolar Deep Water below the mixed layer provides the potential heat source to keep the polynya open during winter, but it is not yet fully understood how this heat is transported towards the surface. Due to its rare occurrence, most of what we know about the Weddell and Maud Rise Polynyas is based on modelling studies. This thesis is delineated into two main themes related to the Maud Rise Polynya. Firstly, this work assesses the presence and magnitude of Southern Ocean polynyas in global climate models. For this purpose, a novel algorithm to detect polynyas in satellite observational products and climate model output is applied to sea-ice concentration and thickness data. We find that both coastal and open-ocean polynyas are not well represented in climate models in terms of extent or frequency. This part discusses methods to improve the models towards a more realistic representation of polynyas. The second theme of the thesis uses new hydrographic observations at Maud Rise and the regional vicinity from autonomous profiling floats programmed to profile at high-frequency (1-3 days), that I deployed and managed. These unique observations are used in two subsequent studies. In the first, salinity and temperature profiles collected over several annual cycles indicate strong spatial gradients between relatively cold and fresh water over Maud Rise and warmer, saltier water surrounding it (Maud Rise Halo). These spatial patterns are tightly correlated with the Maud Rise bathymetry. At the transition between those two water masses at the flank of Maud Rise, interleaving is shown to occur, which causes double diffusive and thermobaric mixing to depths of 800 m. The second study focuses on the upper ocean mixed layer dynamics. The deepest wintertime mixed layers occurred over Maud Rise, but polynyas usually form over the Maud Rise Halo - a region of warm water flow surrounding the plateau region. We find that the winter water over Maud Rise is substantially thicker, and that entrainment of this winter water in autumn makes the mixed layer comparatively cold and fresh compared to the halo region. In this study a comparison with earlier profiling float observations during the 2016 and 2017 polynyas reveals that the mixed layer is significantly saltier in the autumn season. This allows for the mixed layer to deepen more rapidly and by doing so entrain warmer water from below into the mixed layer. This results in a delayed onset of sea-ice formation. In conclusion, this thesis contributes to an improved understanding of the Maud Rise oceanography and related drivers of polynya formation, by focusing on (1) large-scale forcing seen in climate models, (2) intermediate depth water mass interleaving and mixing processes and (3) mixed layer processes as a regulator to polynya occurrence

    Early Winter Triggering of the Maud Rise Polynya

    Get PDF
    What triggers Maud Rise polynya, a large opening in the winter Antarctic sea ice, is still debated. We show that the upcoming opening of all Maud Rise polynyas can be detected in early winter up to four months ahead, especially since the 2002 expansion in satellite observations. In all polynya years, continuous anomalous sea ice thinning begins in May, caused by atmospheric and oceanic forcings. Dynamically, an anomalous cyclonic circulation in the atmosphere and the ocean strengthens the Weddell Gyre and exerts anomalously intense stresses on the ice. Thermodynamically, the warm water advected by the intensified circulation, and most importantly entrained into the mixed layer, thins the ice from below at the beginning of the freezing season, preconditioning the region for a polynya event months later. This four-month-ahead pattern enables early predictions of the polynya, and improved expedition planning and sensor deployment

    Sea Ice Production in the 2016 and 2017 Maud Rise Polynyas

    Get PDF
    Sea ice production within polynyas, an outcome of the atmosphere-ice-ocean interaction, is a major source of dense water and hence key to the global overturning circulation, but is poorly quantified over open-ocean polynyas. Using the two recent extensive open-ocean polynyas within the wider Maud Rise region of the Weddell Sea in 2016 and 2017, we here explore the sea ice energy budget and estimate their sea ice production based on satellite retrievals, in-situ hydrographic observations and the Japanese 55-year Reanalysis. We find that the oceanic heat flux amounts to 36.1 and 30.7 W m−2 within the 2016 and 2017 polynyas, respectively. Especially the 2017 open-ocean polynya produced nearly 200 km3 of new sea ice, which is comparable to the production in the largest Antarctic coastal polynyas. Finally, we determine that ice production is highly correlated with and sensitive to skin temperature and wind speed, which affect the turbulent fluxes. It is also strongly sensitive to uncertainties in the sea ice concentration and 1,000 hPa temperature, which all urgently need to be better monitored at high latitudes. Lastly, more process-oriented campaigns are required to further elucidate the role of open-ocean polynya on the local and global ocean circulations

    Submesoscale Fronts in the Antarctic Marginal Ice Zone and Their Response to Wind Forcing

    Get PDF
    Submesoscale flows in the ocean are energetic motions, O(1–10 km), that influence stratification and the distributions of properties, such as heat and carbon. They are believed to play an important role in sea‐ice‐impacted oceans by modulating air‐sea‐ice fluxes and sea‐ice extent. The intensity of these flows and their response to wind forcing are unobserved in the sea‐ice regions of the Southern Ocean. We present the first submesoscale‐resolving observations in the Antarctic marginal ice zone (MIZ) collected by surface and underwater autonomous vehicles, for >3 months in austral summer. We observe salinity‐dominated lateral density fronts occurring at sub‐kilometer scales. Surface winds are shown to modify the magnitude of the mixed‐layer density fronts, revealing strongly coupled atmosphere‐ocean processes. We posture that these wind‐front interactions occur as a continuous interplay between front slumping and vertical mixing, which leads to the dispersion of submesoscale fronts. Such processes are expected to be ubiquitous in the Southern Ocean MIZ

    Submesoscale Fronts in the Antarctic Marginal Ice Zone and Their Response to Wind Forcing

    Get PDF
    Submesoscale flows in the ocean are energetic motions, O(1–10 km), that influence stratification and the distributions of properties, such as heat and carbon. They are believed to play an important role in sea‐ice‐impacted oceans by modulating air‐sea‐ice fluxes and sea‐ice extent. The intensity of these flows and their response to wind forcing are unobserved in the sea‐ice regions of the Southern Ocean. We present the first submesoscale‐resolving observations in the Antarctic marginal ice zone (MIZ) collected by surface and underwater autonomous vehicles, for >3 months in austral summer. We observe salinity‐dominated lateral density fronts occurring at sub‐kilometer scales. Surface winds are shown to modify the magnitude of the mixed‐layer density fronts, revealing strongly coupled atmosphere‐ocean processes. We posture that these wind‐front interactions occur as a continuous interplay between front slumping and vertical mixing, which leads to the dispersion of submesoscale fronts. Such processes are expected to be ubiquitous in the Southern Ocean MIZ

    The SSM at 1

    Full text link
    On February 3-4, 2016 SUERF – The European Money and Finance Forum –, Deutsche Bundesbank and Stiftung Geld und Währung jointly organized a Colloquium/Conference in Frankfurt in order to evaluate the experience with the SSM – the Single Supervisory Mechanism – during the first year of its existence. The present issue of SUERF Conference Proceedings includes a selection of papers based on the authors’ contributions to the Frankfurt event

    A Novel and Selective Dopamine Transporter Inhibitor, (S)-MK-26, Promotes Hippocampal Synaptic Plasticity and Restores Effort-Related Motivational Dysfunctions

    Get PDF
    Dopamine (DA), the most abundant human brain catecholaminergic neurotransmitter, modulates key behavioral and neurological processes in young and senescent brains, including motricity, sleep, attention, emotion, learning and memory, and social and reward-seeking behaviors. The DA transporter (DAT) regulates transsynaptic DA levels, influencing all these processes. Compounds targeting DAT (e.g., cocaine and amphetamines) were historically used to shape mood and cognition, but these substances typically lead to severe negative side effects (tolerance, abuse, addiction, and dependence). DA/DAT signaling dysfunctions are associated with neuropsychiatric and progressive brain disorders, including Parkinson's and Alzheimer diseases, drug addiction and dementia, resulting in devastating personal and familial concerns and high socioeconomic costs worldwide. The development of low-side-effect, new/selective medicaments with reduced abuse-liability and which ameliorate DA/DAT-related dysfunctions is therefore crucial in the fields of medicine and healthcare. Using the rat as experimental animal model, the present work describes the synthesis and pharmacological profile of (S)-MK-26, a new modafinil analogue with markedly improved potency and selectivity for DAT over parent drug. Ex vivo electrophysiology revealed significantly augmented hippocampal long-term synaptic potentiation upon acute, intraperitoneally delivered (S)-MK-26 treatment, whereas in vivo experiments in the hole-board test showed only lesser effects on reference memory performance in aged rats. However, in effort-related FR5/chow and PROG/chow feeding choice experiments, (S)-MK-26 treatment reversed the depression-like behavior induced by the dopamine-depleting drug tetrabenazine (TBZ) and increased the selection of high-effort alternatives. Moreover, in in vivo microdialysis experiments, (S)-MK-26 significantly increased extracellular DA levels in the prefrontal cortex and in nucleus accumbens core and shell. These studies highlight (S)-MK-26 as a potent enhancer of transsynaptic DA and promoter of synaptic plasticity, with predominant beneficial effects on effort-related behaviors, thus proposing therapeutic potentials for (S)-MK-26 in the treatment of low-effort exertion and motivational dysfunctions characteristic of depression and aging-related disorders

    Munc 18-1 Protein Molecules Move between Membrane Molecular Depots Distinct from Vesicle Docking Sites

    Get PDF
    Four evolutionarily conserved proteins are required for mammalian regulated exocytosis: three SNARE proteins, syntaxin, SNAP-25, and synaptobrevin, and the SM protein, Munc18-1. Here, using single-molecule imaging, we measured the spatial distribution of large cohorts of single Munc18-1 molecules correlated with the positions of single secretory vesicles in a functionally rescued Munc18-1-null cellular model. Munc18-1 molecules were nonrandomly distributed across the plasma membrane in a manner not directed by mode of interaction with syntaxin1, with a small mean number of molecules observed to reside under membrane resident vesicles. Surprisingly, we found that the majority of vesicles in fully secretion-competent cells had no Munc18-1 associated within distances relevant to plasma membrane-vesicle SNARE interactions. Live cell imaging of Munc18-1 molecule dynamics revealed that the density of Munc18-1 molecules at the plasma membrane anticorrelated with molecular speed, with single Munc18-1 molecules displaying directed motion between membrane hotspots enriched in syntaxin1a. Our findings demonstrate that Munc18-1 molecules move between membrane depots distinct from vesicle morphological docking sites

    Author response

    Get PDF
    We recently reported that the C2AB portion of Synaptotagmin 1 (Syt1) could self-assemble into Ca(2+)-sensitive ring-like oligomers on membranes, which could potentially regulate neurotransmitter release. Here we report that analogous ring-like oligomers assemble from the C2AB domains of other Syt isoforms (Syt2, Syt7, Syt9) as well as related C2 domain containing protein, Doc2B and extended Synaptotagmins (E-Syts). Evidently, circular oligomerization is a general and conserved structural aspect of many C2 domain proteins, including Synaptotagmins. Further, using electron microscopy combined with targeted mutations, we show that under physiologically relevant conditions, both the Syt1 ring assembly and its rapid disruption by Ca(2+) involve the well-established functional surfaces on the C2B domain that are important for synaptic transmission. Our data suggests that ring formation may be triggered at an early step in synaptic vesicle docking and positions Syt1 to synchronize neurotransmitter release to Ca(2+) influx. DOI: http://dx.doi.org/10.7554/eLife.17262.00

    Sensitivity of the Cherenkov Telescope Array to TeV photon emission from the Large Magellanic Cloud

    Get PDF
    A deep survey of the Large Magellanic Cloud at ∼0.1-100 TeV photon energies with the Cherenkov Telescope Array is planned. We assess the detection prospects based on a model for the emission of the galaxy, comprising the four known TeV emitters, mock populations of sources, and interstellar emission on galactic scales. We also assess the detectability of 30 Doradus and SN 1987A, and the constraints that can be derived on the nature of dark matter. The survey will allow for fine spectral studies of N 157B, N 132D, LMC P3, and 30 Doradus C, and half a dozen other sources should be revealed, mainly pulsar-powered objects. The remnant from SN 1987A could be detected if it produces cosmic-ray nuclei with a flat power-law spectrum at high energies, or with a steeper index 2.3-2.4 pending a flux increase by a factor of >3-4 over ∼2015-2035. Large-scale interstellar emission remains mostly out of reach of the survey if its >10 GeV spectrum has a soft photon index ∼2.7, but degree-scale 0.1-10 TeV pion-decay emission could be detected if the cosmic-ray spectrum hardens above >100 GeV. The 30 Doradus star-forming region is detectable if acceleration efficiency is on the order of 1−10 per cent of the mechanical luminosity and diffusion is suppressed by two orders of magnitude within <100 pc. Finally, the survey could probe the canonical velocity-averaged cross-section for self-annihilation of weakly interacting massive particles for cuspy Navarro-Frenk-White profiles
    corecore