18 research outputs found

    Observation of two new Ξb−\Xi_b^- baryon resonances

    Get PDF
    Two structures are observed close to the kinematic threshold in the Ξb0π−\Xi_b^0 \pi^- mass spectrum in a sample of proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb−1^{-1} recorded by the LHCb experiment. In the quark model, two baryonic resonances with quark content bdsbds are expected in this mass region: the spin-parity JP=12+J^P = \frac{1}{2}^+ and JP=32+J^P=\frac{3}{2}^+ states, denoted Ξbâ€Č−\Xi_b^{\prime -} and Ξb∗−\Xi_b^{*-}. Interpreting the structures as these resonances, we measure the mass differences and the width of the heavier state to be m(Ξbâ€Č−)−m(Ξb0)−m(π−)=3.653±0.018±0.006m(\Xi_b^{\prime -}) - m(\Xi_b^0) - m(\pi^{-}) = 3.653 \pm 0.018 \pm 0.006 MeV/c2/c^2, m(Ξb∗−)−m(Ξb0)−m(π−)=23.96±0.12±0.06m(\Xi_b^{*-}) - m(\Xi_b^0) - m(\pi^{-}) = 23.96 \pm 0.12 \pm 0.06 MeV/c2/c^2, Γ(Ξb∗−)=1.65±0.31±0.10\Gamma(\Xi_b^{*-}) = 1.65 \pm 0.31 \pm 0.10 MeV, where the first and second uncertainties are statistical and systematic, respectively. The width of the lighter state is consistent with zero, and we place an upper limit of Γ(Ξbâ€Č−)<0.08\Gamma(\Xi_b^{\prime -}) < 0.08 MeV at 95% confidence level. Relative production rates of these states are also reported.Comment: 17 pages, 2 figure

    Precision measurement of CPCP violation in Bs0→J/ψK+K−B_s^0 \to J/\psi K^+K^- decays

    Get PDF
    The time-dependent CPCP asymmetry in Bs0→J/ψK+K−B_s^0 \to J/\psi K^+K^- decays is measured using pppp collision data, corresponding to an integrated luminosity of 3.03.0fb−1^{-1}, collected with the LHCb detector at centre-of-mass energies of 77 and 88TeV. In a sample of 96 000 Bs0→J/ψK+K−B_s^0 \to J/\psi K^+K^- decays, the CPCP-violating phase ϕs\phi_s is measured, as well as the decay widths ΓL\Gamma_{L} and ΓH\Gamma_{H} of the light and heavy mass eigenstates of the Bs0−Bˉs0B_s^0-\bar{B}_s^0 system. The values obtained are ϕs=−0.058±0.049±0.006\phi_s = -0.058 \pm 0.049 \pm 0.006 rad, Γs≡(ΓL+ΓH)/2=0.6603±0.0027±0.0015\Gamma_s \equiv (\Gamma_{L}+\Gamma_{H})/2 = 0.6603 \pm 0.0027 \pm 0.0015ps−1^{-1}, andΔΓs≡ΓL−ΓH=0.0805±0.0091±0.0032\Delta\Gamma_s \equiv \Gamma_{L} - \Gamma_{H} = 0.0805 \pm 0.0091 \pm 0.0032ps−1^{-1}, where the first uncertainty is statistical and the second systematic. These are the most precise single measurements of those quantities to date. A combined analysis with Bs0→J/ψπ+π−B_s^{0} \to J/\psi \pi^+\pi^- decays gives ϕs=−0.010±0.039\phi_s = -0.010 \pm 0.039 rad. All measurements are in agreement with the Standard Model predictions. For the first time the phase ϕs\phi_s is measured independently for each polarisation state of the K+K−K^+K^- system and shows no evidence for polarisation dependence.Comment: 6 figure

    Measurement of the inelastic pp cross-section at a centre-of-mass energy of √s = 7 TeV

    Get PDF
    The cross-section for inelastic proton-proton collisions, with at least one prompt long-lived charged particle of transverse momentum pT &gt; 0.2GeV/c in the pseudorapidity range 2.0 &#62; η &#62; 4.5, is measured by the LHCb experiment at a centre-ofmass energy of √ s = 7 TeV. The cross-section in this kinematic range is determined to be σ acc inel = 55.0 ± 2.4 mb with an experimental uncertainty that is dominated by systematic contributions. Extrapolation to the full phase space, using Pythia 6, yields σinel = 66.9 ± 2.9 ± 4.4 mb, where the first uncertainty is experimental and the second is due to the extrapolation

    Study of η − ηâ€Č mixing from measurement of B (s) 0 → J/ψη(â€Č) decay rates

    Get PDF
    A study of B and B0 s meson decays into J/ψη and J/ψη0 final states is performed using a data set of proton-proton collisions at centre-of-mass energies of 7 and 8 TeV, collected by the LCHb experiment and corresponding to 3.0 fb−1 of integrated luminosity. The decay B0 → J/ψη0 is observed for the first time. The following ratios of branching fractions are measured: B(B0 → J/ψη0 ) B(B0 s → J/ψη0) = (2.28 ± 0.65 (stat) ± 0.10 (syst) ± 0.13 (fs/fd)) × 10−2 , B(B0 → J/ψη) B(B0 s → J/ψη) = (1.85 ± 0.61 (stat) ± 0.09 (syst) ± 0.11 (fs/fd)) × 10−2 , where the third uncertainty is related to the present knowledge of fs/fd, the ratio between the probabilities for a b quark to form a B0 s or a B0 meson. The branching fraction ratios are used to determine the parameters of η−η 0 meson mixing. In addition, the first evidence for the decay B0 s → ψ(2S)η 0 is reported, and the relative branching fraction is measured, B(B0 s → ψ(2S)η 0 ) B(B0 s → J/ψη0) = (38.7 ± 9.0 (stat) ± 1.3 (syst) ± 0.9(B)) × 10−2 , where the third uncertainty is due to the limited knowledge of the branching fractions of J/ψ and ψ(2S) mesons

    Measurement of the Z+b-jet cross-section in pp collisions at √s = 7 TeV in the forward region

    Get PDF
    The associated production of a Z boson or an off-shell photon Îł ∗ with a bottom quark in the forward region is studied using proton-proton collisions at a centre-of-mass energy of 7 TeV. The Z bosons are reconstructed in the Z/γ∗ → ” +” − final state from muons with a transverse momentum larger than 20 GeV, while two transverse momentum thresholds are considered for jets (10 GeV and 20 GeV). Both muons and jets are reconstructed in the pseudorapidity range 2.0 &#60; η &#60; 4.5. The results are based on data corresponding to 1.0 fb−1 recorded in 2011 with the LHCb detector. The measurement of the Z+b-jet cross-section is normalized to the Z+jet cross-section. The measured cross-sections are σ(Z/γ∗ (” +” −) + b-jet) = 295 ± 60 (stat) ± 51 (syst) ± 10 (lumi) fb (0.1) for pT(jet) &#62; 10 GeV, and σ(Z/γ∗ (” +” −) + b-jet) = 128 ± 36 (stat) ± 22 (syst) ± 5 (lumi) fb (0.2) for pT(jet) &#62; 20 GeV

    Search for long-lived particles decaying to jet pairs

    Get PDF
    A search is presented for long-lived particles with a mass between 25 and 50 GeV/c2 and a lifetime between 1 and 200ps in a sample of proton–proton collisions at a centre-of-mass energy of s√=7 TeV, corresponding to an integrated luminosity of 0.62  fb −1, collected by the LHCb detector. The particles are assumed to be pair-produced by the decay of a standard model-like Higgs boson. The experimental signature of the long-lived particle is a displaced vertex with two associated jets. No excess above the background is observed and limits are set on the production cross-section as a function of the long-lived particle mass and lifetime

    Angular analysis of the B-0 -> K*(0) e(+) e(-) decay in the low-q(2) region

    Get PDF
    An angular analysis of the B-0 -&gt; K(*0)e(+) e(-) decay is performed using a data sample, corresponding to an integrated luminosity of 3.0 fb(-1), collected by the LHCb experiment in pp collisions at centre-of-mass energies of 7 and 8TeV during 2011 and 2012. For the first time several observables are measured in the dielectron mass squared (q(2)) interval between 0.002 and 1.120 GeV2/c(4). The angular observables F-L and A(T)(Re) which are related to the K-*0 polarisation and to the lepton forward-backward asymmetry, are measured to be F-L = 0.16 +/- 0.06 +/- 0.03 and A(T)(Re) = 0.10 +/- 0.18 +/- 0.05, where the first uncertainty is statistical and the second systematic. The angular observables A(T)((2)) and A(T)(Im) which are sensitive to the photon polarisation in this q(2) range, are found to be A(T)((2)) = - 0.23 +/- 0.23 +/- 0.05 and A(T)(Im) = 0.14 +/- 0.22 +/- 0.05. The results are consistent with Standard Model predictions

    Measurement of indirect CP asymmetries in D 0 → K − K + and D 0 → π − π + decays using semileptonic B decays

    Get PDF
    No abstract available

    Search for long-lived particles decaying to jet pairs

    Get PDF
    A search is presented for long-lived particles with a mass between 25 and 50 GeV/c2/c^2 and a lifetime between 1 and 200 ps in a sample of proton-proton collisions at a centre-of-mass energy of s=7\sqrt{s}=7 TeV, corresponding to an integrated luminosity of 0.62 fb−1^{-1}, collected by the LHCb detector. The particles are assumed to be pair-produced by the decay of a Standard Model-like Higgs boson. The experimental signature of the long-lived particle is a displaced vertex with two associated jets. No excess above the background is observed and limits are set on the production cross-section as a function of the long-lived particle mass and lifetime
    corecore