8 research outputs found

    Isolation and Characterization of a Molybdenum-reducing and Phenolic- and Catechol-degrading Enterobacter SP. Strain Saw-2

    Full text link
    Molybdenum is an emerging pollutant worldwide. The objective of this study is to isolate molybdenum-reducing bacterium with the ability to grow on phenolic compounds (phenol and catechol). The screening process was carried out on a microplate. The bacterium reduced molybdenum in the form of sodium molybdate to molybdenum blue (Mo-blue). The bacterium required a narrow pH range for optimal reduction of molybdenum, i.e. between pH 6.3 and 6.8, with temperature between 34 and 37 oC. Molybdate reduction to Mo-blue was best supported by glucose as the carbon source. However, both phenol and catechol could not support molybdate reduction. Other requirements for molybdate reduction included sodium molybdate concentrations between 15 and 30 mM, and phosphate concentration of 5.0 mM. The bacterium exhibited a Mo-blue absorption spectrum with a shoulder at 700 nm and a maximum peak near the infrared region at 865 nm. The Mo-reducing bacterium was partially identified as Enterobacter sp. strain Saw-2. The capability of this bacterium to grow on toxic phenolic compounds and to detoxify molybdenum made it a significant agent for bioremediation

    Enzymatic cyanide detoxification by partially purified cyanide dihydratase obtained from Serratia marcescens strain AQ07.

    Get PDF
    The partially purified enzyme of indigenously isolated Serratia marcescensstrain AQ07 was utilised to develop the best form of cyanide detoxification method that is eco-friendly and cost effective. The present study evaluates the feasibility of the enzyme to degrade high cyanide concentrations and the possible metabolic pathways involved, for which the protein concentration and cyanide detoxification activity were quantified. Bacterial cells grown in cyanide incorporated medium were disrupted by sonication and the resultant cell free extract were tested for metabolic pathway. The cell free extract was precipitated by ammonium sulphate precipitation and partially purified by ion exchange chromatography using DEAE cellulose. The maximum enzyme activity achieved was 2125 µM/min. The partially purified enzyme was found to be able to detoxify 82% of 2 mM KCN in 10 min of incubation and cyanide degradation (or depletion) rate showing a linear increase with increasing enzyme concentration. The effective accruing of ammonia as metabolite illustrated that the detoxification was ensued via the function of cyanide dihydratase. Additional confirmation through SDS-Page showed that the molecular weight of enzyme was assessed to be ~38 kDa, which is tandem with the reported cyanide dihydratases. Hence, the use of enzyme as a substitute to live bacterial cells in detoxification of cyanide illustrates various advantages such as the capacity to withstand and detoxify higher cyanide concentration and total reduction in the total cost of process since nutrient provision is immaterial

    Enzymatic cyanide detoxification by partially purified cyanide dihydratase obtained from Serratia marcescens strain AQ07.

    Get PDF
    The partially purified enzyme of indigenously isolated Serratia marcescensstrain AQ07 was utilised to develop the best form of cyanide detoxification method that is eco-friendly and cost effective. The present study evaluates the feasibility of the enzyme to degrade high cyanide concentrations and the possible metabolic pathways involved, for which the protein concentration and cyanide detoxification activity were quantified. Bacterial cells grown in cyanide incorporated medium were disrupted by sonication and the resultant cell free extract were tested for metabolic pathway. The cell free extract was precipitated by ammonium sulphate precipitation and partially purified by ion exchange chromatography using DEAE cellulose. The maximum enzyme activity achieved was 2125 µM/min. The partially purified enzyme was found to be able to detoxify 82% of 2 mM KCN in 10 min of incubation and cyanide degradation (or depletion) rate showing a linear increase with increasing enzyme concentration. The effective accruing of ammonia as metabolite illustrated that the detoxification was ensued via the function of cyanide dihydratase. Additional confirmation through SDS-Page showed that the molecular weight of enzyme was assessed to be ~38 kDa, which is tandem with the reported cyanide dihydratases. Hence, the use of enzyme as a substitute to live bacterial cells in detoxification of cyanide illustrates various advantages such as the capacity to withstand and detoxify higher cyanide concentration and total reduction in the total cost of process since nutrient provision is immaterial

    Enhanced caffeine degradation by immobilised cells of Leifsonia sp. strain SIU

    Get PDF
    In a previous study, we isolated Leifsonia sp. strain SIU, a new bacterium from agricultured soil. The bacterium was tested for its ability to degrade caffeine. The isolate was encapsulated in gellan gum and its ability to degrade caffeine was compared with the free cells. The optimal caffeine degradation was attained at a gellan gum concentration of 0.75% (w/v), a bead size of 4 mm diameter, and 250 beads per 100 mL of medium. At a caffeine concentration of 0.1 g/L, immobilised cells of the strain SIU degraded caffeine within 9 h, which is faster when compared to the case of free cells, in which it took 12 h to degrade. The immobilised cells degraded caffeine completely within 39 and 78 h at 0.5 and 1.0 g/L, while the free cells took 72 and 148 h at 0.5 and 1.0 g/L, respectively. At higher caffeine concentrations, immobilised cells exhibited a higher caffeine degradation rate. At concentrations of 1.5 and 2.0 g/L, caffeine-degrading activities of both immobilised and free cells were inhibited. The immobilised cells showed no loss in caffeine-degrading activity after being used repeatedly for nine 24-h cycles. The effect of heavy metals on immobilised cells was also tested. This study showed an increase in caffeine degradation efficiency when the cells were encapsulated in gellan gum

    Lactic acid bacteria and their bacteriocins: new potential weapons in the fight against methicillin-resistant Staphylococcus aureus

    Get PDF
    Alternative solutions are eminently needed to combat the escalating number of infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Bacteriocins produced by lactic acid bacteria are promising candidates for next-generation antibiotics. Studies have found that these stable and nontoxic ribosomally synthesized antimicrobial peptides exhibit significant potency against other bacteria, including antibiotic-resistant strains. Here the authors review previous studies on bacteriocins that have been effectively employed to manage MRSA infections. The authors' review focuses on the beneficial traits of bacteriocins for further application as templates for the design of novel drugs. Treatments that combine bacteriocins with other antimicrobials to combat pervasive MRSA infections are also highlighted. In short, future studies should focus on the pharmacodynamics and pharmacokinetics of bacteriocins–antimicrobials to understand their interactions, as this aspect would likely determine their efficacy in MRSA inhibition

    Alteration in morphological features of Puntius javanicus liver exposed to copper sulfate

    Get PDF
    The environmental toxicants such as copper are known to affect vital organ especially liver. This study examined the effects of copper sulfate (CuSO4 ) on the liver morphological structure of P. javanicus. The untreated control, 0.1 and 0.3 mg/L CuSO4 treated groups displayed normal polygonal structure of the hepatocyte. However, at the concentrations of 0.5, 1.0 and 5.0 mg/L CuSO4 , the hepatostructure was significantly affected, as shown by the increasing number of dilation and congestion of sinusoids, vacuolation, macrophage activities and peliosis. The damage level and HSI value were increased while the number of hepatic nuclei per mm2 was decreased with the increasing of copper concentration. In conclusion, this study shows that the degree of liver damage in P.javanicus is dependent to the dose exposure

    Characterisation of cholinesterase from kidney tissue of Asian seabass (Lates calcarifer) and its inhibition in presence of metal ion

    Get PDF
    Aim: The cholinesterase (ChE) based inhibition studies from fish were investigated and presented here emerged to be one of the great potential biomarkers for heavy metals monitoring. Methodology: In this study, the capability of ChE extracted from the kidney of Lates calcarifer was assessed for of metal. ChE was purified through ammonium sulphate precipitation and ion exchange chromatography. Results: The purified enzyme gave 12 fold purification with the recovery of 12.17% with specific activity of 2.889 U mg-1. The Michaelis-Menten constant (Km) and Vmax value obtained was 0.1426 mM and 0.0217 �mol min-1mg-1, respectively. The enzyme has the ability to hydrolyse acetylthiocholine iodide (ATC) at a faster rate compared to other two synthetic substrates, propionylthiocholine iodide (PTC) and butyrylthiocholine iodide (BTC). ChE gave highest activity at 20-30�C in Tris-HCl buffer pH 8.0. The results showed that cholinesterase from L. calcarifer kidney was very sensitive to sensitive to copper and lead after being tested argentum, arsenic, cadmium, chromium, copper, cobalt, mercury, nickel, lead and zinc. Interpretation: The effect of heavy metals studied on the activity of ChE differed from each other. The result of the study can be used as a tool for further developing a biomarker for the detection of heavy metals in aquatic ecosystems. In addition, the information can also be used for designing a kit, that would give a rapid and accurate result

    Biomonitoring of Malaysian aquatic environments: A review of status and prospects

    No full text
    Anthropogenic stressors are reported to be the major drivers of aquatic pollution all over the world. Combating aquatic pollution requires adequate monitoring and inventorying mechanisms, and biomonitoring with the help of bioindicator organisms can be regarded as a sensitive tool for the evaluation of the biological and ecological significance of aquatic pollution. Bioaccumulation, biochemical alterations, morphological and behavioural approaches, population and community level approaches, and in vitro toxicity tests of aquatic organisms are all common techniques employed in biomonitoring of aquatic environments. In this review, the body of literature dealing with the pollution via biomonitoring in Malaysian aquatic ecosystems is discussed. It is evident from the study that, in Malaysia, biomonitoring by bioaccumulation received more attention than other biomonitoring techniques. Aquatic ecotoxicological research studies are very limited in east Malaysia (Sabah and Sarawak), when compared to west (Peninsular) Malaysia. The potential applications of biomonitoring and its relevance for the Malaysian aquatic ecosystems are discussed. Recommendations for future improvements in the Malaysian aquatic pollution biomonitoring are also made
    corecore