5 research outputs found

    Water Footprint of Rangeland Beef Production in New Mexico

    No full text
    New Mexico (NM) has been identified as the state in the US that will be most adversely impacted by climate change and associated water stress. Roughly 92% of NM is rangeland, most of which is grazed by beef cattle. We calculated the blue (surface and ground) and green (precipitation) water footprints (WF) of NM beef cattle industry (cow-calf, backgrounding, and feedlot). This analysis indicated that the weighted average WF of NM beef cattle was 28,203 L/kgmeat. The majority of the WF was accounted for green water (82%; 23,063 L/kgmeat) used by rangeland forages. Blue water accounted for only 18% (5140 L/kgmeat) of the total beef WF estimate. The relative contribution of green vs. blue water varied significantly among the different phases of beef production. In cow-calf, green water accounted for 99.5% of the WF whereas blue water, accounted for 100% of beef WF during backgrounding and feedlot. Based on our estimate, NM cow-calf operations is about a third or a quarter of the blue water (m3/year) used to produce corn or wheat, and only 5% or less of the water used to produce cotton or hay. In NM, irrigation accounts for about 84% of freshwater use followed by public/domestic use of 10%. Mining, thermo-electric, livestock production, aquaculture, and industrial uses collectively account for the other 6%

    An Integrated Food, Energy, and Water Nexus, Human Well-Being, and Resilience (FEW-WISE) Framework: New Mexico

    Get PDF
    Interconnected food, energy, and water (FEW) nexus systems face many challenges to support human well-being (HWB) and maintain resilience, especially in arid and semiarid regions like New Mexico (NM), United States (US). Insufficient FEW resources, unstable economic growth due to fluctuations in prices of crude oil and natural gas, inequitable education and employment, and climate change are some of these challenges. Enhancing the resilience of such coupled socio-environmental systems depends on the efficient use of resources, improved understanding of the interlinkages across FEW system components, and adopting adaptable alternative management strategies. The goal of this study was to develop a framework that can be used to enhance the resilience of these systems. An integrated food, energy, water, well-being, and resilience (FEW-WISE) framework was developed and introduced in this study. This framework consists mainly of five steps to qualitatively and quantitatively assess FEW system relationships, identify important external drivers, integrate FEW systems using system dynamics models, develop FEW and HWB performance indices, and develop a resilience monitoring criterion using a threshold-based approach that integrates these indices. The FEW-WISE framework can be used to evaluate and predict the dynamic behavior of FEW systems in response to environmental and socioeconomic changes using resilience indicators. In conclusion, the derived resilience index can be used to inform the decision-making processes to guide the development of alternative scenario-based management strategies to enhance the resilience of ecological and socioeconomic well-being of vulnerable regions like NM
    corecore