16 research outputs found

    Effect of Silica Fume and Synthetic Fibre Towards the Compressive Strength of Modified Crumb Rubber Cement Mortar

    Get PDF
    Cracking is very common problem in cement mortar. Many past research has explored the prospect of using crumb rubber (CR) to overcome this issue. Different sizes of CR have been tested to measure its effect on the pore structure and mechanical strengths of cement mortar. Hence, this study has further modified the crumb rubber mortar mix by adding silica fume and synthetic fiber to improve its mechanical properties. The experimental results suggested that the optimum silica fume replacement of cement content was 5%. Hence, for the subsequent experiment with a fixed 5%silica fume replacement, the highest compressive strength of 26 MPa was achieved with 5% crumb rubber replacement. Finally, additional 0.1% of synthetic fiber added the modified crumb rubber mix to reduce the mix brittleness has produced a desirable compressive strength close to the control specimen which was significantly higher than the minimum threshold required by the standard. However, the water content ratio for the modified mortar mix should be further investigated as the present modified crumb rubber mix has lower workability. It is envisaged that the modified crumb rubber mortar mix has a sound potential to mitigate shrinkage cracking in cement morta

    StormPav Green Pavement the environmentally friendly pavement

    Get PDF
    Growth of economy and population density, open space is being converted to roads or other infrastructures such as buildings or parking lots reducing green space. This paper demonstrates a new type of green pavement designed to replace flexible and rigid pavements which are water impermeable and have a short design life. This type of green pavement helps reduce runoff problems in urban areas. StormPav GP is an innovative Industrialised Building System (IBS) Green Pavement which has been shown to have structural, environmental and economic advantages. However, its susceptibility to distress has yet to be analyzed. This study addresses this gap by analyzing the mechanistic properties and evaluating distress of StormPav GP as compared to flexible and rigid pavements. WinJULEA, KenPave and Circly 6.0 were used for this analysis which also investigated the effects of different tire pressures on deflections. StormPav GP was found to have lower deflection due to a tandem axle dual wheel load on any pavement surface and provided a more uniform settlement with higher elastic modulus and shear modulus than flexible and rigid pavement

    Sensitivity analysis of stormpav composite pavement

    Get PDF
    This study investigates the design and performance of modified composite pavement called StormPav. In this study, the sensitivity analysis is carried out by using available freeware to prove whether the StormPav composite pavement is able to provide long-life pavement and better levels of performance, both structural and functionally, than the traditional pavements. For this case, the sensitivity analysis is included data for fatigue behavior, rutting in the HMA (Hot Mix Asphalt) layer, and temperature gradient reduction of PCC slab with an HMA overlay. The StormPav composite pavement is actually an innovation IBS green pavement with structural, environmental and economic advantages. Inspired from Legos concept, the StormPav is made out of modular panels or "roadblocks" that are like enormous lego pieces that assemble and interlocking together forming a uniform settlement and at the same time acting as the monolithic character. The idea of StormPav is actually to minimize the usage of material in the composite pavement but provide the same strength and benefits as composite pavement

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    MECHANICAL PERFORMANCE OF POLYPROPYLENE FIBRE REINFORCED MORTAR INCORPORATING PALM OIL FUEL ASH

    No full text
    The performance of Fibre Reinforced Mortar (FRM) mixed with microfine size Palm Oil Fuel Ash was investigated in this study (POFA). The ideal volume of POFA and fibre in the mixed mortar is calculated in order to generate a cost-effective high-strength mortar with increased ductility. In this experimental investigation the polypropylene fibre used ranged from 0 kg/m3 to 20 kg/m3 and the replacement of cement with microfine POFA content of 0% and 40% (optimum) was studied. The mechanical properties of fibre reinforced masonry in the presence of the POFA was tested using compressive strength, flexural and split tensile tests. The surface morphology of the fibre reinforced mortar was studied using scanning electron microscopy (SEM) which showed the good fibre-mortar bond in the morphology of the samples at 7 and 28 days. From the compressive strength results, FRM tester contains 40% microfine POFA as a replacement against cement mixed with 10 kg/m3 of polypropylene fibre is optimum and achieved compressive strength up to 79.5 MPa at the 56th day of curing. Ductility ratio up to 13.3 was achieved from the flexural test for FRM sample with 15 kg/m3 polypropylene fibres. The high strength FRM with inclusion of POFA as supplementary cementitious material had the potential to become a new sustainable material in construction

    StormPav Green Pavement the environmentally friendly pavement

    No full text
    Growth of economy and population density, open space is being converted to roads or other infrastructures such as buildings or parking lots reducing green space. This paper demonstrates a new type of green pavement designed to replace flexible and rigid pavements which are water impermeable and have a short design life. This type of green pavement helps reduce runoff problems in urban areas. StormPav GP is an innovative Industrialised Building System (IBS) Green Pavement which has been shown to have structural, environmental and economic advantages. However, its susceptibility to distress has yet to be analyzed. This study addresses this gap by analyzing the mechanistic properties and evaluating distress of StormPav GP as compared to flexible and rigid pavements. WinJULEA, KenPave and Circly 6.0 were used for this analysis which also investigated the effects of different tire pressures on deflections. StormPav GP was found to have lower deflection due to a tandem axle dual wheel load on any pavement surface and provided a more uniform settlement with higher elastic modulus and shear modulus than flexible and rigid pavement
    corecore