81 research outputs found

    Capillary Condensation, Freezing, and Melting in Silica Nanopores: A Sorption Isotherm and Scanning Calorimetry Study on Nitrogen in Mesoporous SBA-15

    Full text link
    Condensation, melting and freezing of nitrogen in a powder of mesoporous silica grains (SBA-15) has been studied by combined volumetric sorption isotherm and scanning calorimetry measurements. Within the mean field model of Saam and Cole for vapor condensation in cylindrical pores a liquid nitrogen sorption isotherm is well described by a bimodal pore radius distribution. It encompasses a narrow peak centered at 3.3 nm, typical of tubular mesopores, and a significantly broader peak characteristic of micropores, located at 1 nm. The material condensed in the micropores as well as the first two adsorbed monolayers in the mesopores do not exhibit any caloric anomaly. The solidification and melting transformation affects only the pore condensate beyond approx. the second monolayer of the mesopores. Here, interfacial melting leads to a single peak in the specific heat measurements. Homogeneous and heterogeneous freezing along with a delayering transition for partial fillings of the mesopores result in a caloric freezing anomaly similarly complex and dependent on the thermal history as has been observed for argon in SBA-15. The axial propagation of the crystallization in pore space is more effective in the case of nitrogen than previously observed for argon, which we attribute to differences in the crystalline textures of the pore solids.Comment: 10 pages, 7 figure

    Sub-surface stratigraphy of Stella Passage, Tauranga Harbour.

    Get PDF
    Port of Tauranga Ltd supported two initiatives designed to develop a greater understanding of the distribution of sediments below Stella Passage (Figure 1), particularly relating to areas that may require future dredging: (1) As part of INTERCOAST PhD research by Ehsan Jorat, Port of Tauranga provided logistic support for a series of high-resolution Cone Penetration Test (CPT) soundings along a transect on the western margin of Stella Passage in February – March 2012; (2) Port of Tauranga provided part-funding of a Summer Scholarship student (Amy Christophers) over the 2012/13 summer, particularly to look at pre-existing cores and core descriptions. In addition, the University of Waikato undertook a series of sub-bottom seismic profile measurements in Stella Passage as part of a Summer Scholarship funded by the University over the 2012/13 summer. This report summarises the current state of these investigations

    Tephra layers : a controlling factor on submarine translational sliding?

    Get PDF
    Submarine slope failures occur at all continental margins, but the processes generating different mass wasting phenomena remain poorly understood. Multibeam bathymetry mapping of the Middle America Trench reveals numerous continental slope failures of different dimensions and origin. For example, large rotational slumps have been interpreted to be caused by slope collapse in the wake of subducting seamounts. In contrast, the mechanisms generating translational slides have not yet been described. Lithology, shear strength measurements, density, and pore water alkalinity from a sediment core across a slide plane indicate that a few centimeters thick intercalated volcanic tephra layer marks the detachment surface. The ash layer can be correlated to the San Antonio tephra, emplaced by the 6000 year old caldera-forming eruption from Masaya-Caldera, Nicaragua. The distal deposits of this eruption are widespread along the continental slope and ocean plate offshore Nicaragua. Grain size measurements permit us to estimate the reconstruction of the original ash layer thickness at the investigated slide. Direct shear test experiments on Middle American ashes show a high volume reduction during shearing. This indicates that marine tephra layers have the highest hydraulic conductivity of the different types of slope sediment, enabling significant volume reduction to take place under undrained conditions. This makes ash layers mechanically distinct within slope sediment sequences. Here we propose a mechanism by which ash layers may become weak planes that promote translational sliding. The mechanism implies that ground shaking by large earthquakes induces rearrangement of ash shards causing their compaction (volume reduction) and produces a rapid accumulation of water in the upper part of the layer that is capped by impermeable clay. The water-rich veneer abruptly reduces shear strength, creating a detachment plane for translational sliding. Tephra layers might act as slide detachment planes at convergent margins of subducting zones, at submarine slopes of volcanic islands, and at submerged volcano slopes in lakes
    corecore