40 research outputs found

    Multiple Roles of BRIT1/MCPH1 in DNA Damage Response, DNA Repair, and Cancer Suppression

    Get PDF
    Mammalian cells are frequently at risk of DNA damage from both endogenous and exogenous sources. Accordingly, cells have evolved the DNA damage response (DDR) pathways to monitor and assure the integrity of their genome. In cells, the intact and effective DDR is essential for the maintenance of genomic stability and it acts as a critical barrier to suppress the development of cancer in humans. Two central kinases for the DDR pathway are ATM and ATR, which can phosphorylate and activate many downstream proteins for cell cycle arrest, DNA repair, or apoptosis if the damages are irreparable. In the last several years, we and others have made significant progress to this field by identifying BRIT1 (also known as MCPH1) as a novel key regulator in the DDR pathway. BRIT1 protein contains 3 breast cancer carboxyl terminal (BRCT) domains which are conserved in BRCA1, MDC1, 53BP1, and other important molecules involved in DNA damage signaling, DNA repair, and tumor suppression. Our in vitro studies revealed BRIT1 to be a chromatin-binding protein required for recruitment of many important DDR proteins (ATM, MDC1, NBS1, RAD51, BRCA2) to the DNA damage sites. We recently also generated the BRIT1 knockout mice and demonstrated its essential roles in homologous recombination DNA repair and in maintaining genomic stability in vivo. In humans, BRIT1 is located on chromosome 8p23.1, where loss of hetero-zigosity is very common in many types of cancer. In this review, we will summarize the novel roles of BRIT1 in DDR, describe the relationship of BRIT1 deficiency with cancer development, and also discuss the use of synthetic lethality approach to target cancers with HR defects due to BRIT1 deficiency

    Genetic Diversity of Dahongjun, the Commercially Important “Big Red Mushroom” from Southern China

    Get PDF
    BACKGROUND: In southern China, a wild ectomycorrhizal mushroom commonly called "Dahongjun" or "Big Red Mushroom" by the local residents, has been harvested, consumed, and/or exported as an exotic food for many years. Although ecologically and economically important, very little is known about this mushroom, including its diversity and population structure. METHODOLOGY AND PRINCIPAL FINDINGS: In this study, we analyzed 122 samples from five local populations representing the known distribution ranges of this mushroom in southern China. We investigated the genetic diversity and geographic structure of this mushroom using sequences from four DNA fragments. Our analyses identified that this mushroom contained at least three divergent lineages: one corresponds to a recently described species Russula griseocarnosa from southern China and the remaining two likely represent two novel species. While these lineages were prominently structured geographically based on ITS sequences, evidence for ancient and/or recent gene flow was also identified within individual lineages. In addition, a local population from Ailaoshan in central Yunnan Province where 85 of our 122 specimens came from showed clear evidence of recombination. CONCLUSION AND SIGNIFICANCE: The ectomycorrhizal mushroom "Dahongjun" from southern China is a species complex with at least three divergent lineages. These lineages are largely geographically structured and there is evidence for recombination in nature. Our results indicate mature Dahongjun mushrooms with abundant basidiospores are important for the reproduction of this mushroom in nature and that individual populations of this species should be managed separately

    Proteomic characterization of HIV-modulated membrane receptors, kinases and signaling proteins involved in novel angiogenic pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Kaposi's sarcoma (KS), hemangioma, and other angioproliferative diseases are highly prevalent in HIV-infected individuals. While KS is etiologically linked to the human herpesvirus-8 (HHV8) infection, HIV-patients without HHV-8 and those infected with unrelated viruses also develop angiopathies. Further, HIV-Tat can activate protein-tyrosine-kinase (PTK-activity) of the vascular endothelial growth factor receptor involved in stimulating angiogenic processes. However, Tat by itself or HHV8-genes alone cannot induce angiogenesis <it>in vivo </it>unless specific proteins/enzymes are produced synchronously by different cell-types. We therefore tested a hypothesis that <it>chronic </it>HIV-<it>replication in non-endothelial cells </it>may produce novel factors that provoke angiogenic pathways.</p> <p>Methods</p> <p>Genome-wide proteins from HIV-infected and uninfected T-lymphocytes were tested by subtractive proteomics analyses at various stages of virus and cell growth <it>in vitro </it>over a period of two years. Several thousand differentially regulated proteins were identified by mass spectrometry (MS) and >200 proteins were confirmed in multiple gels. Each protein was scrutinized extensively by protein-interaction-pathways, bioinformatics, and statistical analyses.</p> <p>Results</p> <p>By functional categorization, 31 proteins were identified to be associated with various signaling events involved in angiogenesis. 88% proteins were located in the plasma membrane or extracellular matrix and >90% were found to be essential for regeneration, neovascularization and angiogenic processes during embryonic development.</p> <p>Conclusion</p> <p>Chronic HIV-infection of T-cells produces membrane receptor-PTKs, serine-threonine kinases, growth factors, adhesion molecules and many diffusible signaling proteins that have not been previously reported in HIV-infected cells. Each protein has been associated with endothelial cell-growth, morphogenesis, sprouting, microvessel-formation and other biological processes involved in angiogenesis (p = 10<sup>-4 </sup>to 10<sup>-12</sup>). Bioinformatics analyses suggest that overproduction of PTKs and other kinases in HIV-infected cells has <it>suppressed </it>VEGF/VEGFR-PTK expression and promoted <it>VEGFR-independent </it>pathways. This unique mechanism is similar to that observed in neovascularization and angiogenesis during embryogenesis. Validation of clinically relevant proteins by gene-silencing and translational studies <it>in vivo </it>would identify specific targets that can be used for early diagnosis of angiogenic disorders and future development of inhibitors of angiopathies. This is the first comprehensive study to demonstrate that HIV-infection alone, without any co-infection or treatment, can induce numerous "embryonic" proteins and kinases capable of generating novel <it>VEGF-independent </it>angiogenic pathways.</p

    A Neutrophil Phenotype Model for Extracorporeal Treatment of Sepsis

    Get PDF
    Neutrophils play a central role in eliminating bacterial pathogens, but may also contribute to end-organ damage in sepsis. Interleukin-8 (IL-8), a key modulator of neutrophil function, signals through neutrophil specific surface receptors CXCR-1 and CXCR-2. In this study a mechanistic computational model was used to evaluate and deploy an extracorporeal sepsis treatment which modulates CXCR-1/2 levels. First, a simplified mechanistic computational model of IL-8 mediated activation of CXCR-1/2 receptors was developed, containing 16 ODEs and 43 parameters. Receptor level dynamics and systemic parameters were coupled with multiple neutrophil phenotypes to generate dynamic populations of activated neutrophils which reduce pathogen load, and/or primed neutrophils which cause adverse tissue damage when misdirected. The mathematical model was calibrated using experimental data from baboons administered a two-hour infusion of E coli and followed for a maximum of 28 days. Ensembles of parameters were generated using a Bayesian parallel tempering approach to produce model fits that could recreate experimental outcomes. Stepwise logistic regression identified seven model parameters as key determinants of mortality. Sensitivity analysis showed that parameters controlling the level of killer cell neutrophils affected the overall systemic damage of individuals. To evaluate rescue strategies and provide probabilistic predictions of their impact on mortality, time of onset, duration, and capture efficacy of an extracorporeal device that modulated neutrophil phenotype were explored. Our findings suggest that interventions aiming to modulate phenotypic composition are time sensitive. When introduced between 3–6 hours of infection for a 72 hour duration, the survivor population increased from 31% to 40–80%. Treatment efficacy quickly diminishes if not introduced within 15 hours of infection. Significant harm is possible with treatment durations ranging from 5–24 hours, which may reduce survival to 13%. In severe sepsis, an extracorporeal treatment which modulates CXCR-1/2 levels has therapeutic potential, but also potential for harm. Further development of the computational model will help guide optimal device development and determine which patient populations should be targeted by treatment

    53BP1 and p53 synergize to suppress genomic instability and lymphomagenesis

    No full text
    p53-binding protein 1 (53BP1) participates in the cellular response to DNA double-stranded breaks where it associates with various DNA repair/cell cycle factors including the H2AX histone variant. Mice deficient for 53BP1 (53BP1(−/−)) are sensitive to ionizing radiation and immunodeficient because of impaired Ig heavy chain class switch recombination. Here we show that, as compared with p53(−/−) mice, 53BP1(−/−)/p53(−/−) animals more rapidly develop tumors, including T cell lymphomas and, at lower frequency, B lineage lymphomas, sarcomas, and teratomas. In addition, T cells from animals deficient for both 53BP1 and p53 (53BP1(−/−)/p53(−/−)) display elevated levels of genomic instability relative to T cells deficient for either 53BP1 or p53 alone. In contrast to p53(−/−) T cell lymphomas, which routinely display aneuploidy but not translocations, 53BP1(−/−)/p53(−/−) thymic lymphomas fall into two distinct cytogenetic categories, with many harboring clonal translocations (40%) and the remainder showing aneuploidy (60%). We propose that 53BP1, in the context of p53 deficiency, suppresses T cell lymphomagenesis through its roles in both cell-cycle checkpoints and double-stranded break repair
    corecore