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Abstract
Neutrophils play a central role in eliminating bacterial pathogens, but may also contribute to

end-organ damage in sepsis. Interleukin-8 (IL-8), a key modulator of neutrophil function,

signals through neutrophil specific surface receptors CXCR-1 and CXCR-2. In this study a

mechanistic computational model was used to evaluate and deploy an extracorporeal sep-

sis treatment which modulates CXCR-1/2 levels. First, a simplified mechanistic computa-

tional model of IL-8 mediated activation of CXCR-1/2 receptors was developed, containing

16 ODEs and 43 parameters. Receptor level dynamics and systemic parameters were cou-

pled with multiple neutrophil phenotypes to generate dynamic populations of activated neu-

trophils which reduce pathogen load, and/or primed neutrophils which cause adverse tissue

damage when misdirected. The mathematical model was calibrated using experimental

data from baboons administered a two-hour infusion of E coli and followed for a maximum

of 28 days. Ensembles of parameters were generated using a Bayesian parallel tempering

approach to produce model fits that could recreate experimental outcomes. Stepwise logis-

tic regression identified seven model parameters as key determinants of mortality. Sensitiv-

ity analysis showed that parameters controlling the level of killer cell neutrophils affected

the overall systemic damage of individuals. To evaluate rescue strategies and provide prob-

abilistic predictions of their impact on mortality, time of onset, duration, and capture efficacy

of an extracorporeal device that modulated neutrophil phenotype were explored. Our find-

ings suggest that interventions aiming to modulate phenotypic composition are time sensi-

tive. When introduced between 3–6 hours of infection for a 72 hour duration, the survivor

population increased from 31% to 40–80%. Treatment efficacy quickly diminishes if not

introduced within 15 hours of infection. Significant harm is possible with treatment durations

ranging from 5–24 hours, which may reduce survival to 13%. In severe sepsis, an extracor-

poreal treatment which modulates CXCR-1/2 levels has therapeutic potential, but also

potential for harm. Further development of the computational model will help guide optimal
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device development and determine which patient populations should be targeted by

treatment.

Author Summary

Sepsis occurs when a patient develops a whole body immune response due to infection. In
this condition, white blood cells called neutrophils circulate in an active state, seeking and
eliminating invading bacteria. However, when neutrophils are activated, healthy tissue is
inadvertently targeted, leading to organ damage and potentially death. Even though sepsis
kills millions worldwide, there are still no specific treatments approved in the United
States. This may be due to the complexity and diversity of the body’s immune response,
which can be managed well using computational modeling. We have developed a compu-
tational model to predict how different levels of neutrophil activation impact survival in
an overactive inflammatory conditions. The model was utilized to assess the effectiveness
of a simulated experimental sepsis treatment which modulates neutrophil populations and
activity. This evaluation determined that treatment timing plays a critical role in therapeu-
tic effectiveness. When utilized properly the treatment drastically improves survival, but
there is also risk of causing patient harm when introduced at the wrong time. We intend
for this computational model to support and guide further development of sepsis treat-
ments and help translate these preliminary results from bench to bedside.

Introduction
Sepsis, a systemic inflammatory response due to an infection, affects 900,000 Americans per
year and its incidence is expected to increase over the next 10–20 years as the population ages
[1]. While it is acknowledged that sepsis is a growing problem, its associated mortality rate has
remained persistently high for the last 20 years and is currently near 20% [1–4]. Sepsis is now
the leading cause of in-hospital death in the United States, yet there are no FDA approved spe-
cific treatments [5]. While understanding of the underlying mechanisms in sepsis has been rap-
idly improving, translation to clinically effective treatments has proven very challenging [6,7].
Much of this difficulty translating treatments may be the diversity and complexity of individual
immune response and patient population [8,9]. These complexities lend themselves well to
computational modeling, which can help integrate these complexities into a unified pathophys-
iological framework and optimize potential treatments [10].

Neutrophils are one of the first responders to sites of inflammation and play a critical role in
the innate immune response. When effective, neutrophils migrate from the bloodstream
through endothelial walls to the site of inflammation by sensing gradients of chemokines,
which bind to neutrophil cell surface receptors. In early stages of sepsis neutrophils potentially
play a duplicitous role, both actively fighting the invading pathogen but also contributing to
undesirable systemic inflammation, which often leads to multiple organ dysfunction, immune
paralysis, or death [11,12]. Neutrophils’ roles in sepsis are well recognized but the dynamics of
multiple phenotypes and their impact on treatments is not fully understood. A key chemokine
impacting neutrophil behavior and phenotype is interleukin-8 (IL-8). IL-8 signals through
functionally distinct surface receptors CXCR-1/2, which are primarily expressed on neutro-
phils. CXCR-1 is primarily responsible for activating phospholipase D [13], which mediates
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respiratory burst and other pathogen killing functions. CXCR-2 has been shown to stimulate
migratory functions such as chemotaxis and diapedesis [14,15].

The motivation of this work is to use computational modeling of CXCR-1/2 signaling, and
the associated dynamics in neutrophil phenotype composition, to explore whether modifying
this dynamic could be exploited to favorably impact outcome in sepsis. A population based
mechanistic computational model, which incorporates both receptor level dynamics and neu-
trophil response to pathogen, was developed to explore the mechanisms involved in sepsis pro-
gression and calibrated in septic baboons. Furthermore, an experimental extracorporeal
treatment which modulates CXCR-1/2 receptor levels was evaluated in silico using the model
framework. The computational model described in this manuscript provides a physiologic
rationale for neutrophil’s CXCR-1/2 mediated activity in sepsis, delivers insight into the over-
riding mechanisms involved, and suggests that interventions aiming to modulate phenotypic
composition are time sensitive.

Results

Computation of Parameter Ensembles explaining Survivor and Non-
Survivor dynamics
Of the 16 baboons subjected to bacterial infusion, 11 (69%) died and 5 (31%) survived, with
death occurring within 6 days of bacterial infusion. Based on these two systemic outcomes, a
thorough investigation of the model (see Methods section & Fig 1) was completed to identify
parameter regimes that explain the dynamics of each group of the responders.

The initial conditions for the state variables of the ODE were fixed to simulate experimental
stimulation (Table 1). Among the rate parameters, some were fixed to literature values. These
included pathogen growth and decay rates, basal decay rates of naïve neutrophils, CXCR-1/2
internalization and recycling rates and creatinine decay rate (See fixed parameters in Tables 2
and 3). Remaining parameters were estimated by generating parameter ensembles using a
Bayesian parallel tempering approach that fit our model to the survivor and non-survivor
experimental data sets (see Methods). We conducted the parameter estimation process in two
rounds. In round one, the model was fitted to the two data sets separately. By fitting to the two
data sets separately, we were able to effectively show that the model was capable of replicating
both lethal and non-lethal outcomes through only a change in few parameters. In an attempt
to classify the underlying differences, we identified the parameters that were most influential in
determining the outcome (survivor or non-survivor) of an individual using stepwise logistic
regression. This resulted in a list of seven key parameters. These parameters tend to control the
rate at which neutrophils grow and how quickly they can change phenotypes, which play a crit-
ical role in determining how quickly and severely the animal will respond to the infection.

Once these differentiating parameters were identified, we put the model through a second
round of estimation. In the second round, the model was fit to both data sets simultaneously;
allowing only the seven previously identified key parameters to vary between the survivor and
non-survivor subpopulations (see Table 3). Additionally, two fixed parameters were allowed to
take different values across the two populations to maintain the appropriate initial conditions
in creatinine and white blood cell count. This step resulted in two new parameter ensembles
that were identical in 28 parameters but varied in nine parameters. This second step enabled us
to better crystallize the differences between animals that survived and those that died. These
ensembles are biologically more relevant as we expect the animals’ immune responses to be
highly similar, with small but important differences indicating susceptibility to a septic insult.
Resulting full marginal distributions for each of the 7 parameters were statistically different
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across survivor and non-survivor populations (Fig 2). The final mean values and the standard
deviation of all the estimated parameters are summarized in Tables 2 and 3.

Features of Survivor and Non-Survivor dynamics
Trained model outcomes. The two ensembles resulted in model fits that faithfully recreate

the key features of the surviving and non-surviving data sets (Fig 3). Pathogen dynamics
showed a transient behavior, with the model predicting a slightly higher peak for non-survi-
vors. The ensembles captured the transient peak in IL-8 that occurs early after infection, with
the non-surviving population exhibiting a higher maximum peak. The predicted neutrophil
populations also tracked well with the experimental results, with circulating basal neutrophils
exhibiting a strong initial decline in abundance as the cells are activated and migrate to the site
of infection, followed by a growth phase as the body compensates for the infection, and finally
a return to baseline levels. While both surviving and non-surviving populations exhibited this
trend, the surviving populations had a noticeably higher peak in basal neutrophils during the

Fig 1. Model diagram detailing neutrophil phenotypes and critical feedback loops. The system is divided into modules based on the level at which the
interactions occur. The systemic level includes the interactions between the pathogen (P), four neutrophil phenotypes (basal: NB, migratory: NM, killing: NK

and killing and migratory: NK/M) and chemokine IL-8. The receptor level interactions include the intracellular dynamics of CXCR-1/2, namely activation,
internalization and recycling. Two types of feedback occur between the two levels, active surface receptors can trigger the phenotype conversion of the
neutrophils and IL-8 produced at the systemic level triggers the trafficking of the receptors. A CXCR-1/2 independent activation via fMLP is included to model
general pro-inflammatory response. The systemic damage (D) indicates the overall damage (direct and indirect) caused by the action of the killer neutrophils.

doi:10.1371/journal.pcbi.1004314.g001
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growth phase. Levels of neutrophil elastase / α1-PI complex in the blood, indicative of the kill-
ing and damage causing function of activated neutrophils, peaks around 15 hours post-infec-
tion. The non-surviving population showed a stronger and longer lasting peak, which is
captured by the model. Creatinine, a measure of kidney health, increased to higher and more
sustained levels in non-surviving animals, as kidney health decreases and creatinine was not as
efficiently cleared.

Model predictions. The model also made predictions in the absence of observable data on
the dynamics of neutrophil phenotypes (Fig 4 & Fig 5). Although both populations had similar
peaks in fully activated neutrophils, allowing them both to fight off the infection on similar
time scales as predicted experimentally, they showed strong differences in other populations.
Non-survivors showed a significantly stronger spike in damage-causing killer neutrophils,
while survivors showed a stronger spike in migratory neutrophils. This can also be seen in the
parameter ensembles, as neutrophils in non-survivors had an increased proclivity to activate
their killing function in response to IL-8, while neutrophils in survivors were faster to activate
their migratory functions (Fig 2). Generating similar numbers of fully activated neutrophils,
but through differing intermediate activation populations, could be an explanation for how
these two animal populations controlled infection with similar dynamics, while still experienc-
ing differing fates.

At the receptor level, underlying activation of CXCR-1/2 was transient in both the survivors
and non-survivors (S1 Fig). Compared to the neutrophil dynamics which was slow and spread
across few hours, receptor dynamics was very fast. Most of the receptors were in the free state,
and internalized CXCR-1 is recycled faster than CXCR-2. Among the active receptors, there
was one order of magnitude higher level of internalized CXCR-1 receptors than the surface
bound CXCR-1 receptors, while this difference is two orders of magnitude for CXCR-2. Non-
survivors had higher levels of the surface and internalized active receptors. This can be
explained by the higher peak in IL-8 levels for the non-survivors than the survivors (Fig 3).
But, survivors had very close levels of CXCR-1 and -2 bound receptors and non-survivors had
slightly higher levels of bound CXCR-1 than bound CXCR-2. These small differences in the

Table 1. Initial conditions.

No. Symbol Description Initial Condition–Survivors Initial Condition–Non-Survivors Units

1 P Pathogen 1000 1000 CFU

2 NB Basal neutrophils 4.4 5.06 103 cells/μl

3 NK Neutrophils with killer phenotype 0.0 0.0 103 cells/μl

4 NM Neutrophils with migratory phenotype 0.0 0.0 103 cells/μl

5 NK/M Neutrophils with dual phenotype 0.0 0.0 103 cells/μl

6 CIL8 Systemic IL-8 concentration 0.0 0.0 nM

7 D Global tissue damage 0.0 0.0 unitless

8 CR1s Surface CXCR1 population 0.0 0.0 unitless

9 CR1i Internalized CXCR1 population 0.0 0.0 unitless

10 CR2s Surface CXCR2 population 0.0 0.0 unitless

11 CR 2i Internalized CXCR2 population 0.0 0.0 unitless

12 Ccreat Creatinine 91.5455 102.4 nM

13 F Filter term 0.0 0.0 unitless

14 CR1t CXCR1 trapped 0.0 0.0 unitless

15 CfMLP fMLP 0.0 0.0 nM

16 Celas Neutrophil elastase / α1-PI complex 0.0 0.0 ng/ml

17 WBC Total white blood cells 4.4 5.06 103 cells/μl

doi:10.1371/journal.pcbi.1004314.t001
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peak levels of the receptors coupled with differences in the transition rates were sufficient to
result in different neutrophil phenotype levels in the two populations, a key prediction from
the ensemble modeling process.

Factors modulating cumulative damage in the two populations
Until now, the focus was on deriving parametric ensembles explaining the mechanism of sepsis
progression in each population. In this section, the sensitivity of sepsis-mediated damage to dif-
ferent model parameters (and hence different processes in the network) was evaluated for each
population. Area under the damage curve (AUCD) was used as an output metric of cumulative
damage from sepsis. The analysis was done in two steps. First the sensitive parameters affecting
damage in each population was identified to check if similar parameters were responsible for
modulating damage within each population. Next, the two populations were combined to iden-
tify the parameters primarily responsible for a switch from a low to a high damage region. Since
the model is highly nonlinear, a global sensitivity analysis (GSA) based on variance decomposi-
tion was chosen. This method decomposes the total variance in the output into variance and co-
variance contributions from each rate parameter and its higher order combinations. To reduce

Table 2. Shared parameter values.

No. Symbol Description Fixed/Fitted Mean Std. Dev. Units

1 kPG Pathogen growth Fixed 1 0 Hour-1

2 kPG�NK=M
Neutrophil induced pathogen death Fitted 145.5391 0.040553 (Hour *103 cells/μl)-1

3 kPL Pathogen population limit Fitted 1.6533E-7 2.3409E-7 (Hour*CFU)-2

4 kP Pathogen decay Fitted 271.9904 352.4858 CFU/Hour

5 kd
p Pathogen decay Fixed 1000 0 CFU

6 kNB
Basal neutrophil natural Fixed 0.1 0 Hour-1

7 kNK
Killer neutrophil decay Fitted 0.0330 0.0275 Hour-1

8 kNM
Migratory neutrophil decay Fitted 0.1244 0.1936 Hour-1

9 kNK=M
Migratory-Killer neutrophil decay Fitted 0.1176 0.1772 Hour-1

10 kNM�NK�IL8 IL-8 induced migratory neutrophil to neutrophil migratory-killer transition Fitted 168.7708 260.7247 Hour-1

11 kIL8−P Pathogen induced IL-8 production Fitted 2.7810E-6 2.0441E-6 Hour-1

12 kIL8−D Tissue damage induced IL-8 production Fitted 5.7938E-9 7.9615E-9 nM*Hour-1

13 kIL8 IL-8 decay Fitted 0.3352 0.0261 Hour-1

14 kD�NK
Tissue damage induced by killer neutrophils Fitted 0.0319 0.0285 (Hour *103 cells/μl)-1

15 kD Damage recovery rate Fitted 7.0147 8.8870 Hour-1

16 kfilter_on Filter production rate Fitted 6.1698E-4 8.2047E-4 (CFU*Hour)-1

17 kr1 Dissociation constant for R1 receptors Fixed 79.2 0 Hour-1

18 kr2 Dissociation constant for R2 receptors Fixed 79.2 0 Hour-1

19 kD Affinity constant for IL-8 to the receptors Fixed 2.5E-3 0 Hour-1

20 ki1 Internalization rate for IL-8-R1 complex Fixed 5.196 0 Hour-1

21 ki10 Recycle rate for R1 Fixed 0.612 0 Hour-1

22 ki2 Internalization rate for IL-8-R2 complex Fixed 20.796 0 Hour-1

23 ki20 Recycle rate for R2 Fixed 0.144 0 Hour-1

24 kfMLP Pathogen induced fMLP production Fitted 5.9866E-7 1.3864E-6 nM*Hour-1

25 kd
fMLP Pathogen induced fMLP production Fitted 622.9280 1.6952E3 CFU

26 kfMLP−D Pathogen induced fMLP decay Fitted 9.8425E4 1.7303E5 Hour-1

27 kfMLP�NB
fMLP induced basal neutrophil to migratory-killer phenotype transition Fitted 0.0021 0.0025 Hour-1

28 kne Scaling of Nk cells to neutrophil elastase / α1-PI complex levels Fitted 0.0351 0.0209 ng/cell

doi:10.1371/journal.pcbi.1004314.t002

Neutrophil Dynamics in Systemic Inflammation

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004314 October 15, 2015 6 / 30



computational cost, a meta-model based approximation was done (See Materials andMethods).
The meta-model method called Random Sampling High Dimensional Model Representation (or
RS-HDMR), decomposes the output function (AUCD) into a set of component functions that
includes the mean followed by first order effects of each parameter and other higher order effects
resulting from parameter combinations. The degree of sensitivity of a parameter or its combina-
tion with other parameters (as a set) is captured by Sobol’ index which by definition is the frac-
tion of the total output variance attributed to the selected parameter set. To perform GSA, 4000
samples were generated from the parameter distributions of the two ensembles and the dynamics
of the damage term was simulated for the survivors and the non-survivors. Fig 6(A) shows the
AUCD distributions for each ensemble. As expected, the survivors show lower levels of cumula-
tive damage than the non-survivors. The coefficient of variation was higher for the non-survivors
(CV = 1.98) as compared to the survivors (CV = 0.32). When GSA was performed on the survi-
vor and non-survivor samples separately and in combination, it was found that a third order
RS-HDMR contributed close to 95% of the variance for both the populations. However, most of
the important contributions were from the parameters constituting highly ranked first order
indices. Fig 6B and 6C shows the first order and total Sobol’ indices for the first five most sensi-
tive parameters of each population and Fig 6(E) shows the results when both populations are
combined. Note that the total Sobol’ index for each parameter, is the sum of first order index and
all higher order indices involving that parameter.

For GSA conducted separately on the survivor and non-survivor ensembles, it is found that
damage is mainly determined by the decay rate of the killer neutrophils, kNK

(direction of influ-

ence shown in Fig (6D)). The decay rate of the killer neutrophil controls the rate at which killer
neutrophils are removed from the system, and the faster these neutrophils are removed, the
lesser the damage. The next important term is the direct damaging effect of the killer neutro-
phils and this parameter has significant second order interactions with other parameters of the
model as seen from the total sensitivity index. The next set of parameters has secondary impor-
tance and these parameters are different for the two populations (variance contributions of
each parameter in this set is in the range, 1–10%). In survivors, damage is more influenced by
the production rate of basal neutrophils and IL-8 in presence of the pathogen. In non-survi-
vors, the effect is more pronounced for damage mediated IL-8 production (a positive feedback

Table 3. Unique parameter values.

No. Symbol Description Fixed/
Fitted

Mean—
Survivor

Std. Dev.–
Survivor

Mean–Non-
survivor

Std. Dev.–Non-
survivor

Units

1 kNG Neutrophil baseline growth rate,
based on 12 h life

Fixed 0.506 0 0.54417 0 103 cells/ (μl
*Hour)

2 kcreat Creatinine decay rate Fixed 0.1591 0 0.1792 0 Hour-1

3 kNB�G Pathogen influenced neutrophil
growth

Fitted 6.6447E5 1.5092E6 6.4953E5 1.0063E6 unitless

4 kd
NB�G Pathogen influenced neutrophil

growth (denominator)
Fitted 8.8322E4 1.7149E5 5.5590E4 9.0741E4 unitless

5 kNK�IL8 IL-8 induced neutrophil basal to killer
phenotype transition

Fitted 8.9617E3 4.9596E3 4.5302E4 2.6386E4 Hour-1

6 kNM�IL8 IL-8 induced neutrophil basal to
migratory phenotype transition

Fitted 4.8740E3 6.5289E3 2.9804E3 6.6655E3 Hour-1

7 kNK�NM�IL8 IL-8 induced killer neutrophil to
neutrophil migratory-killer transition

Fitted 3.9436 12.6137 5.9631 16.7691 Hour-1

8 kd
IL8�P Pathogen induced IL-8 production Fitted 1.2814E4 1.2646E4 1.2841E4 1.4198E4 CFU

9 kfilter_off Filter decay rate Fitted 0.0813 0.0145 0.1407 0.0328 Hour-1

doi:10.1371/journal.pcbi.1004314.t003
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component), damage recovery term and killer neutrophil production rate. This indicates that
overall damage in non-survivors is more sensitive to the parameters associated with killer cells,
IL-8 and damage.

For GSA conducted on the combined population, the decay rate of killer neutrophils
remains the most important parameter. Interestingly, the sensitivity value and ranking of three
parameters increase relative to the case where the populations are analyzed separately. Among
these, the transition rate of naïve neutrophils to the killer phenotype via CXCR1 (kNK�IL8) is the

most important parameter. The next two parameters include the decay rate in filter Eq (7)
(which determines the delay between pathogen generation and resulting neutrophil entry
into circulation during sepsis) followed by the parameter controlling transition rate of killer
neutrophil to the dual phenotype by CXCR2. Functional dependence of damage on these three
parameters shows that they could be responsible for shift in the population from a low to a

Fig 2. Posterior distributions of parameters allowed to vary across ensembles. Each parameter was fit separately to data from surviving and non-
surviving animals. Values for the mean, 25th-75th percentile, and 2.5th to 97.5th percentiles are shown. Parameters distributions were compared using a two-
sample Kolmogorov-Smirnov test. *p<0.05, **p<0.01, ***p<0.001.

doi:10.1371/journal.pcbi.1004314.g002
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high damage region. For example, Fig 6(F) shows the dependence of AUCD on parameter
kNK�IL8. Within each population, no particular trend is visible, but relative increase in the tran-

sition rate in the non-survivors correlates well with increased damage. Results in Fig 2 showed
that the ranges of two of the parameters, kNK�IL8 and kfilter_off were significantly different for the

survivors and non-survivors. Results from sensitivity analysis support this prediction and fur-
ther show that the parameter values correlate well with the transition in observed damage.

Treatment implementation
Extracorporeal devices are emerging as promising therapies for treatment of sepsis[16–19]. In
this instance we propose extracorporeal treatment which directly modulates CXCR-1/2 levels
using a bioactive surface which interacts with unbound neutrophil surface receptors upon con-
tact. Such a device, which is currently under development at the University of Pittsburgh, gen-
erates targeted and controlled downregulation of neutrophil surface receptors. The dynamics
of this device can be analyzed within the framework of the generated computational model to
determine its proof of principle in silico and help optimize treatment parameters. The proposed
treatment implementation is shown in Fig 7. Specifically, the receptors are allowed to go to a
trapped state and become unavailable for activation by IL-8 for the indicated time of treatment.
To evaluate the potential of such an immunomodulatory treatment, we next performed an in
silico trial by varying (1) the time when the treatment is introduced and removed and (2) the
strength of interaction between the trapping device and the unbound neutrophil surface
receptors.

Impact of treatment parameters. For the analysis, the treatment initiation time was var-
ied between 0 and 12 hours after the initial infection and the treatment discontinuation time
was varied between 0 and 100 hours after infection. To modulate the treatment intensity, the
device-receptor Kd was varied between the 1x10-2 M and 1x10-5 M, with 2.5e-3 M representing
the Kd of IL-8 and the receptors. The treatment was tested on a simulated population con-
structed by randomly selecting 69% of parameter sets from the non-survivor ensemble and
31% of parameter sets from the survivor ensemble, as observed in the experimental population.
Survivor rate was measured for each set of proposed treatment parameters, as determined by
the logistic regression classifier trained on the parameter ensembles with no treatment. A survi-
vor rate above 31% was considered an improvement over baseline, and below 31% indicated
the treatment causing overall harm.

Fig 8 shows the survival rate following different treatment strengths and start-end times. In
general, the optimal time for beginning treatment was between 3 and 6 hours after the original
infection, resulting 40–80% survival rates depending on treatment strength. Starting the treat-
ment after six hours was typically too late to have a strong effect on survival. Starting treatment
within 3 hours of infection would often have neutral or deleterious effects, as it would dampen
the initial inflammatory response that is critical to fighting off the infection. This led to an
increase in pathogen growth and an increased late inflammatory response once treatment was
removed. In the worst case scenarios following early treatment of a short duration, survival
rates dipped as low as 13.2%, and this trend could be seen across all treatment strengths.

Fig 3. Simulated model fits with their experimental training data.Mean (red), 25th-75th percentile (dark
blue), and 5th-95th percentile trajectories of the simulated ensemble are shown. Experimental data points are
shown in black with error bars representing one standard deviation above and below the mean. Results are
shown for surviving (left) and non-surviving (right) animals for all observables with corresponding
experimental data; (A) pathogen levels, (B) free IL-8 levels, (C) white blood cell counts, (D) neutrophil
elastase / α1-PI complex levels, and (E) creatinine levels.

doi:10.1371/journal.pcbi.1004314.g003
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When treated at the optimal time, survival rates increased from the 31% baseline to greater
than 80% with sufficient device-receptor affinity. Using a Kd of 1e-2 M results in a maximum
survival rate of 47%, and decreasing the Kd to 1e-3 M further increases this rate to 80.3%. Fur-
ther decreases in the Kd to 1e-4 M and 1e-5 M results in increases in survival rate to 83.1% and
84.4%, showing there is a diminishing return to continuously increasing the device affinity. As
the affinity increases, we see a new trend emerge in the simulation results, where treatment
that begins as early as the onset of infection and is significantly long lasting leads to increased
survival rates, and a less strictly defined optimal treatment time (Fig 8(D)). In this case, the
treatment is so strong and long-lasting that the inflammatory response is very strongly sup-
pressed, implying that overwhelming pathogen growth leading to death cannot be reached
within the bounds of this. However, this suppression of the immune system allows for signifi-
cant pathogen growth and could leave the subject vulnerable to secondary infections which are
not considered in this model.

Fig 4. Model predictions for neutrophil phenotype dynamics following infection.Mean (red), 25th-75th percentile (dark blue), and 5th-95th percentile
trajectories of the simulated ensemble are shown. Predictions are shown for surviving (left) and non-surviving (right) animals for the four neutrophil
phenotypes considered in the model; (A) basal neutrophils, which were calibrated with white blood cell count data, as well as (B)migratory neutrophils, (C)
killer neutrophils, and (D) killer/migratory neutrophils for which there is no experimental data.

doi:10.1371/journal.pcbi.1004314.g004

Fig 5. Model predictions for maximal levels of each neutrophil phenotype compared across ensembles.Maximal values for each neutrophil
phenotype from each trajectory in both ensembles were recorded. Values for the mean, 25th-75th percentile, and 2.5th to 97.5th percentiles are shown.
Distributions were compared using a two sample T-test. *p<0.05, **p<0.01, ***p<0.001.

doi:10.1371/journal.pcbi.1004314.g005
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Fig 6. Factors affecting cumulative systemic damage. (A) Cumulative damage seen in survivors and non-survivors. The histograms show the area under
the damage curve until 144 hr. The rate parameters were sampled from the generated ensemble for each population. The distribution used for GSA contains
4000 samples for each population. (B-C) Prime drivers of cumulative damage. First order and total effect Sobol’ indices which explained most of the variance
are tabulated here for the survivor and non-survivor population respectively. (D) Functional dependence of AUCD on killer cell decay rate for the survivors (S)
and non-survivors (NS). The green line has been added for visual guidance of the trend and is based on the mean trend identified by the RS-HDMR
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Trends in response to treatment also appear to be robust to individual parameter values.
The two most sensitive parameters kNK

and kNK�IL8 were varied, increasing and decreasing each

by 10% and 50% and recalculated the simulated population response to treatment (S2 Fig and
S3 Fig). In general response trends remained the same, with a defined peak in survivorship
when treatment is administered 2–4 hours after infection. The magnitude of responses varied
predictably, as strongly increasing kNK

, the death rate of damage-causing neutrophils, resulted

in a higher peak of survival. Conversely, increasing kNK�IL8, which corresponds to a faster

induction of damaging-causing cells, leads to a slight decrease in survivorship. Varying kNK
had

a larger effect on these results, as expected following its identification as the model’s most sensi-
tive parameter affecting damage (Fig 6).

Discussion
This manuscript discusses the development of a mechanistic computational model of IL-8
mediated activation of CXCR-1/2 receptors in baboons which were administered intravenous
E. coli. Neutrophil phenotypes, which dictate neutrophil functional response, were generated in

component functions. For each population, damage decreases with increase in the decay rate of the killer neutrophil. (E) Prime drivers of cumulative damage
for the combined population. (F) Functional dependence of AUCD on CXCR1 induced naïve to killer neutrophil transition rate for the survivors and non-
survivors. The green line shows that within the population, damage is not particularly sensitive to the transition rate, but increased transition rate could be
responsible for higher damage levels seen in non-surviving population.

doi:10.1371/journal.pcbi.1004314.g006

Fig 7. Model diagram showing receptor level treatment implementation. The extracorporeal treatment introduces a trapped receptor state for CXCR-1/
2. This state prevents IL-8 induced phenotype transition, which limits NK generation. The treatment is modeled entirely in the receptor level of model, leaving
the systemic level (see Fig 1) unchanged.

doi:10.1371/journal.pcbi.1004314.g007
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silico based on CXCR-1/2 surface receptor levels, linking receptor level dynamics with neutro-
phil functional response. Parameter ensembles were generated for survivor and non-survivor
populations, allowing for in silico observation of sepsis progression. Additionally, an extracor-
poreal treatment which modulates CXCR-1/2 levels on neutrophils was introduced in silico.
This proof of concept evaluation allowed for preliminary device evaluation and optimization of
treatment parameters.

To our knowledge, this is the first model describing dynamic interactions of neutrophils
which specifically takes into account information sharing between the systemic variables and
the receptor levels. The receptor level dynamics of the model function on a rapid time scale,
adjusting to systemic IL-8 levels in a matter of minutes. These changes in receptor signaling
dictate changes in neutrophil phenotype, which dictates neutrophil function and hence mortal-
ity. This link thus provides a valuable mechanistic framework that can be subjected to clinically
relevant treatment scenarios. For example, the experimental treatment could be implemented
purely on the receptor level. Alternatively, systemic variables such as IL-8 levels or neutrophil
phenotype could be modulated to evaluate performance of hemoadsorption or neutrophil
sequestration extracorporeal devices.

Application of parallel tempering approach for parameter estimation allowed for the effi-
cient generation of ensembles of parameters and resulted in a model that could fit experimental
data well [20], allowing reasonably accurate simulations of the system without making strong
claims about the values of single parameters which are notoriously difficult to measure and are
likely to vary between individuals. This allows for robust, population-level predictions rather
than point predictions of model parameters and model behavior. However, the computed
multi-dimensional posterior distribution in parameter space reflects constraints imposed by
empirical data, as well as data sparsity and uncertainty. These constraints impose a covariance
structure in the posterior distribution such that there is robustness in model behavior, despite
large uncertainties in individual parameter values. Learning this structure is likely crucial in
building predictive model [21,22]. Yet, the method is making no claim that individual parame-
ter sets in the ensemble represent individuals in a population. At best, an individual could be
represented by a smaller ensemble, reflecting uncertainty relating to this particular individual.
Yet, it is fair to say that the ensemble is meant to represent uncertainly about a population of
individuals, so that simulating the ensemble will provide expected behaviors across a popula-
tion of individuals, as long as such behaviors are compatible with the empirical data used to
generate the ensemble.

One trend that arose in the estimated parameter ensembles was a large difference in the
magnitudes of different rate constants, sometimes spanning many orders of magnitude. This is
not surprising, due to the inclusion of biological events spanning many time scales, ranging
from fast molecular events to cell phenotype transitions and finally to the full duration of infec-
tions lasting for days. This suggests that future iterations of the model would benefit from a
multiscale approach optimized towards handling these different time scales. Previous efforts
[23–25] have worked out approaches that allow for efficient deterministic simulation of fast-
scale molecular events, combined with more accurate stochastic simulation of slow-scale or
rare events, and such techniques have resulted in impressive results [26,27].

Sensitivity analysis on the parametric ensembles enabled identification of the relative
importance of the model parameters to state variables of the model. In general, sensitivity

Fig 8. Effects of simulated treatment on animal survival rates. Survival rates of a simulated population of
animals following treatment with the proposed extracorporeal device considering a device-receptor affinity of
(A) 1x10-2 M, (B) 1x10-3 M, (C) 1x10-4 M, (D) 1x10-5 M. In all cases the time of treatment was varied between
0 and 12 hours post infection and ended between 0 and 100 hours post infection.

doi:10.1371/journal.pcbi.1004314.g008
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analysis is an important step in systems biology workflows and provides valuable information
on model characteristics [28,29]. Most models in the literature resort to a local analysis which
is sufficient if the parameters are well defined. For nonlinear dynamic models based on sparse
experimental data and for systems which have inherently high parametric uncertainty, a global
analysis needs to be done. Global techniques perform combinatorial perturbations of the
parameters utilizing samples from the high-dimensional space. Application of meta-modeling
approximations via RS-HDMR as was done in this work can significantly reduce the computa-
tional cost of sampling requirements for global methods. Additionally, if the sampling process
takes into account parameter covariance computed from an ensemble model, biologically rele-
vant sensitivity indices can be obtained. The systematic integration of ensemble modeling and
global sensitivity analysis in this work allowed for identification of the parameters that control
biological outcomes like sepsis induced tissue damage.

In addition to parameter fits, the behavior of the non-fitted state variables were inspected to
check for features relevant to a clinical prognosis. Sepsis progression was analyzed by compar-
ing differences between survivor and non-survivor populations. Neutrophil phenotypes in par-
ticular give insight into the differences between survivors and non-survivors. Of importance is
the killer neutrophil population, which is highly elevated in the non-survivor population (see
Figs 4 & 5). This neutrophil phenotype is associated with neutrophil induced tissue damage in
the model. With support from sensitivity analysis, killer neutrophil decay rate, which sets the
levels and dynamics of NK, was found to be the most important contributor to total damage in
both the populations. Multiple studies support this finding, indicating that non-survivors or
those with more severe sepsis experience increased levels of neutrophil induced tissue damage
and MPO generation [11,30–33]. Furthermore, the importance of this term is supported by
studies on neutrophil apoptosis and lifespan. Research by Taneja [34] and Fialkow [35] deter-
mined that neutrophil apoptosis was reduced in cases of severe sepsis, leading to increased life-
span of primed and activated neutrophils. Damage caused by these neutrophils was partially
responsible for the progression of sepsis in these severe cases. Upon completion of the com-
bined GSA, kNK�IL8 was also found to be a significant contributor to total damage. Increase of

this term leads to preferential generation of the NK neutrophil phenotype, which directly con-
tributes to tissue damage.

On the other hand neutrophils in the migratory phenotype were similar in survivor and
non-survivor populations. These findings agree with the data from Cummings et al [32] which
found neutrophil’s harvested from septic and non-septic patients migrated to IL-8 at similar
levels. Interestingly, survivors and non-survivors had similar levels of neutrophil kill/migrate
phenotype, indicating that both ensembles had adequate neutrophil populations to eliminate
the source pathogen. Therefore, the additional damage in non-survivors was neutrophil
induced resulting from elevated neutrophil killer phenotype levels. The IL-8 mediated killing
functions of neutrophils are primarily triggered through CXCR-1 rather than CXCR-2. Modu-
lation of CXCR-1 levels in particular may reduce the killing neutrophil phenotype and reduce
neutrophil induced organ damage.

A number of experimental treatments for sepsis and other acute inflammatory diseases have
targeted the CXCR-1 receptor with success in animal models [36–38]. However, translation to
humans has been difficult for two main reasons [6]. First are inherent species dependent differ-
ences between human and animal immune systems that must be recognized and accounted for
in pre-clinical studies. Second is the misuse of animal models and misinterpretation of pre-
clinical data [39]. The recent debate on the translational fidelity of critical disease mouse mod-
els is a prime example where two separate comparisons of the human versus mouse genomic
leukocyte responses using the same database resulted in two contradictory conclusions [40,41].
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In the case of IL-8 signaling, which is not present in murine models, homologous cytokines
and their associated surface receptors must be examined in IL-8’s place [42]. In this context, in
silico modeling is an attractive alternative given that it allows preliminary evaluation of experi-
mental human treatments at minimal costs.

Multiple extracorporeal sepsis treatments are currently under investigation with promising
results. Blood purification techniques such as hemoadsorption [16,17,43–45] allow for cyto-
kines and other detrimental proteins to be removed directly from the blood during the cytokine
storm, curbing the patient’s immune response. Another approach called activated neutrophil
sequestration [19,46], selectively removes harmful neutrophil phenotypes from circulation. In
this instance we propose extracorporeal treatment which directly modulates CXCR-1/2 levels
using a bioactive surface which interacts with unbound neutrophil surface receptors upon con-
tact, resulting in CXCR-1/2 downregulation. This approach is advantageous because no com-
ponents of blood are removed from circulation, allowing for a healthy immune response after
appropriate modulation of neutrophil surface receptors. In addition, all necessary cell-cell
interactions are allowed to occur within well-controlled microcirculation of the device. Such a
setup also allows treatment to be easily titrated or halted by adjusting blood flow through the
device. The dynamics of such a device were analyzed within the framework of the generated
ensemble model to determine its proof of principle in silico and to evaluate its benefits in rescu-
ing individuals marked as non-survivors by the parameter ensembles.

When evaluated in silico the proposed extracorporeal CXCR-1/2 modulation device
improved mortality from 31% to above 80% when deployed under certain ranges of conditions.
This substantial improvement in survival supports the hypothesis that a CXCR-1/2 modulatory
device may improve patient outcomes. However, time and length of treatment implementation
are critical parameters tied to this success. The importance of quickly beginning sepsis treat-
ment has been well established [47], particularly for antibiotic administration. Our simulations
showed a well-defined optimal time for the initiation of treatment, between 3 and 6 hours after
the onset of severe infection. Treatment, if started within this time frame, had a high degree of
success over a large range of treatment durations and strengths. This window is specific to the
animal model under study and will not directly translate to a clinical setting for two main rea-
sons. First, the model was calibrated with experimental data obtained from baboons, and dif-
ferences between the baboon and human immune systems must be considered. Second, the
baboons were exposed to a well-controlled bacterial infusion at a known time point, followed
by a predictably quick and strong immune response. In this instance the pathogen load is well
controlled and a large portion of the ensemble can therefore be addressed by a single treatment
setting. In clinical practice, patients present with varied pathogen loads and they may be in dif-
ferent stages of infection and immune response. So, future experiments will need to combine
clinical knowledge with additional data gathering and simulation to obtain treatment timing
relevant for human patients.

Clinicians are actively searching for biomarkers to track sepsis disease progression and pre-
scribe treatment [48–50]. Neutrophil phenotype may be a valuable indicator of disease state
and individual patient response, but this information is difficult to collect in the clinic. Cur-
rently neutrophil phenotype can be evaluated either through functional testing or flow cytome-
try analysis of critical neutrophil surface receptors. In addition to CXCR-1/2 which are the
focus of this model, CD11b, CD88, and CD62L all have roles in dictating neutrophil phenotype
[51] and surface receptor expressions vary depending on severity of the inflammatory
response. To more readily exploit phenotype data it may be possible to map neutrophil func-
tion to easily measurable biomarkers. Using these indirect measures of neutrophil phenotype
can guide clinicians to ideal treatment regimens.
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In conclusion, the ensemble model presented in this report provided key insights into the
progression and mechanisms involved in progression of sepsis. We underline the role of rela-
tive abundance of killer, migratory and dual neutrophil phenotypes in deciding survivorship in
an animal model. In addition, an in silico extracorporeal treatment which modulates CXCR-1/
2 neutrophil surface receptors showed promising results. Further study and collection of exper-
imental data will help further refine both the model and experimental device. Incorporation of
data from a diverse patient population and expansion of current ensembles would increase the
model’s generalizability, improving the potential for translation. Additional model parameters
related to the device such as flow rate, surface area, and form factor could be included, allowing
the model to streamline device development.

Methods

Experimental data set protocol
After general anesthesia, instrumentation and a 30 minute stabilization period, sixteen baboons
(Papio ursinus) weighing between 19 and 32 kg were infused with 2 x 109 CFU Escherichia coli
per kg over a two-hour period as described previously [52]. Thereafter, antibiotic therapy was
delivered (gentamycin 4mg/kg twice a day). Eight animals were placed in an acute study lasting
6 days, while another eight were placed in the chronic study intended to last 28 days. All ani-
mals were observed for a 4-hour period after bacteria infusion then 11, 23, 35, 47, 72 hour and
6 days after infusion. Pathogen counts in blood, IL-8, creatinine, white blood cell, neutrophil
elastase / α1-PI complex, and other physiologic parameters and biomarkers were gathered at
multiple time point. For animals in the chronic study an additional time point was collected at
28 days. At the end of the study period, the baboons were again anesthetized for measurements
and thereafter sacrificed with an overdose of pentobarbital. This study was approved by the
Institutional Animal Care and Use Committee at Biocon Research Institute and animals were
treated according to NIH guidelines.

Model framework and description
A simplified mechanistic model of IL-8 mediated activation of CXCR-1/2 receptors and neu-
trophil response to a pathogen was developed based on available literature information and
general knowledge of acute inflammatory response. Receptor level dynamics and systemic
parameters were coupled with multiple neutrophil phenotypes to generate dynamic popula-
tions of activated neutrophils which reduce pathogen load, and/or primed neutrophils which
cause adverse tissue damage when misdirected. Mathematical representation of the interac-
tions detailed in Fig 1 were generated using ordinary differential equation (ODE) framework
with the rate of interactions described by mass action kinetics or Hill type kinetics [53,54]. The
interactions included in the model gives rise to 16 ODE state variables and 43 rate parameters.

In brief, the model is initiated by a pathogen load, which represents a bacterial inoculation.
Presence of pathogen leads to continued growth as well as IL-8 and fMLP cytokine production.
IL-8 is generated indirectly from pathogen generation from responding phagocytic mononu-
clear cells [55]. IL-8 initiates CXCR-1/2 activation in the receptor level, which in turn generates
neutrophil phenotype change. Depending on phenotype, neutrophils may cause either patho-
gen elimination or misdirected tissue damage. A systemic damage indicator represents overall
patient health. Increased systemic damage results in further IL-8 generation [56,57], resulting
in a positive feedback loop. This simplified system captures the basic functionality of acute IL-
8 mediated immune response to pathogen and is capable providing valuable feedback on
potential therapeutic treatments modulating these mechanisms. A more detailed description of
model equations follows.
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Pathogen. Eq (1) describes the population of foreign pathogen. Base pathogen growth rate
increases linearly with pathogen until approaching a carrying capacity at elevated pathogen
loads. In addition to basal pathogen death, the Neutrophil kill/migrate phenotype is capable of
decreasing pathogen population through diapedesis, followed by targeted phagocytosis
[11,58,59].

dP
dt

¼ kPGP � kP�NK=M
NK=MP � kpP

kdp þ P
� kpLP

2 ð1Þ

Ligands: Interleukin-8 (IL-8) and fMLP. In the model, neutrophils progress through
multiple phenotypes which dictate neutrophil migratory, phagocytic, and antibiotic activity.
The association of chemokine IL-8 with the surface CXCR-1/2 triggers the transition of basal
neutrophils to functional phenotypes. Previously characterized receptor surface activation,
internalization, and recycling rates of CXCR-1/2 are utilized to predict receptor levels and neu-
trophil phenotypes in response to systemic IL-8 stimulation [14,60]. IL-8 production rate is a
function of elevated pathogen and tissue damage [61,62]. Both terms are represented as Hill
Equations in Eq (2). While IL-8 is not directly linked to pathogen levels, this simplified repre-
sentation captures IL-8 release from macrophages and endothelial cells in response to infec-
tion.

dCIL8

dt
¼ kIL8�PP

kdIL8�P þ P
þ kIL8�DD

2

kdIL8�D þ D2
� kIL8CIL8 ð2Þ

Eq (3) characterizes a general pro-inflammatory pathway, which is independent of CXCR-
1/2 activation has been added to represent alternate means of neutrophil induced pathogen
activation. This generic pathway is not modeled using receptor level dynamics and directly
transitions the NBasal (NB) population to NKilling/Migratory (NK/M).The generic proinflammatory
ligand growth is dictated by pathogen level.

dCfMLP

dt
¼ kfMLPP

kdfMLP þ P
� kfMLP�DCfMLP ð3Þ

Neutrophil Surface Receptors CXCR-1 & CXCR-2. Receptor level dynamics dictate neu-
trophils advancement into one of four phenotypes depending on CXCR-1/2 surface activation.
Each receptor can occupy one of the three states, namely free surface receptor, surface receptor
bound to IL-8 and internalized receptor bound to IL-8 [63]. Eq (4) and Eq (5) describe CXCR-
1 surface and internalized populations, which have been non-dimensionalized to remove the
free receptor state. Equivalent equations are present for CXCR-2. The active surface state was
modeled as the dynamic condition which drives neutrophil population phenotype change [64].
This model makes the assumption that CXCR-1/2 receptors are conserved.

dCR1s

dt
¼ kf1CIL8ð1� CR1s � CR1iÞ � kr1CR1s � ki1CR1s ð4Þ

dCR1i

dt
¼ ki1CR1s � ki10CR1i ð5Þ

Neutrophil Phenotype. Eq (6) represents the resting state (NB) represents basal neutro-
phils which have not been stimulated by IL-8 or other proinflammatory stimuli. These
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neutrophils are mobile in blood, but not capable of causing systemic damage or utilizing their
anti-pathogen capacity without transitioning to another phenotype. All neutrophils begin in
this basal state prior to activation and priming. Without stimulation, neutrophil growth and
death rates are in equilibrium, however growth rate increases with the introduction of patho-
gen, which has been expressed through a filter equation to produce a physiologic time delay
[11,65]. CXCR-1/2 surface complex levels dictate the transition rates of NB to the NMigratory

(NM) or Nkilling (NK) phenotypes. Additionally, there is a direct pathway to transition NB to
NK/M. This mechanism represents a general proinflammatory process independent of CXCR-
1/2 signaling. A filter equation was generated in Eq (7). This function fits the physiologic delay
between pathogen generation and increased neutrophils entering circulation.

dNB

dt
¼ kNG 1þ kNB�GF

kdNB�G þ F

 !
� kNK�IL8

NBCR1s

� kNM�IL8
NBCR2s � kNB

NB � kfMLP�NB
NB

ð6Þ

dF
dt

¼ kfilter onP � kfilter off F ð7Þ

Eq (8) contains neutrophils which have been activated via IL-8 mediated CXCR-2 stimula-
tion.

dNM

dt
¼ kNM�IL8NBCR2s � kNM�NK�IL8NMCR1s � kNM

NM ð8Þ

Eq (9) characterizes the killing phenotype (NK), representing neutrophils which have been
activated via IL-8 mediated CXCR-1 stimulation. NK neutrophils are capable of untargeted
cytotoxic activity, resulting in systemic organ damage. The CXCR-1/2 surface population dic-
tates transition rates into phenotypes. Neutrophil elastase / α1-PI complex was utilized in the
model to fit NK neutrophil population. As shown in Eq (10) levels of neutrophil elastase /
α1-PI complex equate to levels of circulating NK phenotypes.

dNK

dt
¼ kNK�IL8NBCR1s � kNK�NM�IL8NKCR2s � kNK

NK ð9Þ

dCelas

dt
¼ kNE

dNK

dt
ð10Þ

Both NM and NK phenotypes are capable of progressing to the NK/M phenotype through
CXCR-1/2 surface receptor activation. This neutrophil state (NK/M), shown in Eq (11), repre-
sents neutrophils which have been activated through both CXCR-1 and CXCR-2 and are capa-
ble of target pathogen removal, effectively fighting infection. The pathogen equation (Eq (1))
contains a term which dictates pathogen death in response to NK/M levels. Once activated
through CXCR-1/2 neutrophils are not capable of returning to the basal NB phenotype.

dNK=M

dt
¼ kNK�NM�IL8NKCR2s þ kNM�NK�IL8NMCR1s � kNK=M

NK=M þ kfMLP�NB
NB ð11Þ

Damage. A systemic damage indicator (Eq (12)) was developed to represent overall ani-
mal health. Damage is increased by the population of NK and decays gradually as tissue and
organs recover. Creatinine, a biomarker for kidney function, was utilized in Eq (13) as an indi-
cator for the damage term ensemble computation. Creatinine is maintained at a constant level
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in the absence of damage, but systemic levels increase with damage as body’s ability to clear
creatinine decreases [66].

dD
dt

¼ kD�NK
NKð1� DÞ � kDD ð12Þ

dCcreat

dt
¼ kcreat�P � kcreatð1� DÞCcreat ð13Þ

The model uses empirical time series of Pathogen (CFU), IL-8 (nM), creatinine (mM),
White Blood Cell count (103 cells/μl), and neutrophil elastase / α1-PI complex (ng/ml) for
computation of the ensemble. State variables and their initial conditions are listed in Table 1.

Parameter estimation
The model contains 38 parameters, 13 of which are fixed based on literature data (Table 1).
Parameter values were inferred using a Bayesian parallel tempering approach [22,67], which
utilizes traditional Markov Chain Monte Carlo (MCMC) methods to sample the Bayesian pos-
terior distribution P(p|y), the probability of parameter set p given data y, given by the Bayes
formula

Pðpj yÞ ¼ LðyjpÞyðpÞR
LðY jpÞyðpÞ

where L(y|p) is the likelihood of observing y for a model with parameters p, θ(p) is the prior
distribution, and

R
L(Y | p)θ(p) is the normalizing constant. Additional sampling efficiency is

gained by running multiple parallel chains evolving at different temperatures. Higher tempera-
ture increases the likelihood of acceptance of proposed steps. This allows the high temperature
chains to move more freely through the parameter space, avoiding getting stuck in local min-
ima. This results in more efficient exploration of parameter space [20,68] a method we have
applied extensively in parameter estimation of practically unidentifiable complex non-linear
models [10,69,70]. This resulted in the creation of parameter ensembles, where each parameter
is represented by a posterior distribution, rather than a single value. Free parameters were fit
separately to the survivor and non-survivor experimental data sets, resulting in two parameter
ensembles representing surviving and non-surviving animals.

Bayesian priors. Prior distributions were selected for each parameter. In each case uni-
form priors were used, with a suitably large range so as to encompass all reasonable parameter
values. This was ideal due to the limited prior knowledge and phenomenological nature of
many of the parameters. Tighter ranges were enforced on select parameters as required to
avoid non-physiologic model behavior. All candidate parameter values were selected from
these pre-defined priors.

Parameter set fitness. Fitness (log likelihood) of candidate parameters sets was deter-
mined by the difference between model simulations and experimental data, as determined by
the sum of squared residuals cost function,

Fitness ¼
X
i;j;k

wi;j;k �
ðyi;j;k � ŷ i;j;kÞ2

2si;j;k
2

Where wi,j,k is a weighting function, yi,j,k is the output for a simulation with a single set of
parameters, ŷ i;j;k is the experimental mean, and σi,j,k σi,j,k is the experimental standard deviation

at time point i, observable j, and data set k. No additional penalties or constraints were added
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to parameter selection. To ensure proper fitting of the pathogen observable a threshold was
added to change all values below the experimental limit of detection (4.4 CFU) to 0.

Parallel tempering. To efficiently sample the posterior distribution, six separate Markov
chains were run, initiated with parameter values randomly selected from the supplied prior distri-
butions which met a maximum energy criterion. Each chain was initiated with a temperature and
step size parameter which controlled the chain’s ability to fully explore the parameters space.
Chains were allowed to swap from a higher temperature to a lower temperature every 25 steps to
allow for local sampling of newly found local minima. Step size and temperature parameters
dynamically changed every 6,250 and 2,500 steps respectively to attempt to reach an ideal step
acceptance rate of 23% [71], and swap rates of 15%-30%. Once these targets were reached, the
temperature schedule and step sizes were fixed. Parameter sets were saved every 25 steps. Full
exploration of parameter space was confirmed by examining, for each parameter, the frequency
histogram of its full marginal posterior distribution, confirming that it spanned the prior domain.

We measured convergence and chain stationarity using the Gelman-Rubin criteria [72,73].
All parameters had converged with a potential scale reduction factor (PSRF)< 1.1 following
200,000 (x25) MCMC steps. Another 100,000 steps were taken to build a posterior distribution
for each parameter that would be used for all model analysis and simulation. This ensured that
all samples from the burn-in time for each chain were discarded, and only samples from the
correct stationary distribution were used. The ensemble of all parameter sets from the lowest
chain comprised the computed ensemble (posterior distribution).

Selection of key parameters
In order to better capture the underlying biological differences between animals that survive
and those that die following the same challenge we attempted to identify the most important
parameters in determining animal fate. After computing ensembles for survivors and non-sur-
vivors, we performed regularized logistic regression, forward conditional stepwise logistic
regression, and backward conditional logistic regression to identify a subset of parameters that
are most indicative of outcome. Predictors consisted of all estimated parameters of both
ensembles, and the indicator variable was the source (survivor or non-survivor) of the ensem-
ble. Parameters were selected that were considered significant by all three methods, leaving a
set of seven key parameters.

Model fitting. A second round of model fitting was then performed. In this round, 18 of
the 25 parameters were fit simultaneously to both data sets, resulting in identical parameter
values in the two ensembles. The seven parameters identified as being significant were fit twice,
once against the survivor data set and once against the non-survivor data set, resulting in dif-
ferent parameter values across the two ensembles. This resulted in a smaller and more focused
difference between the final ensembles.

Global sensitivity analysis
Global Sensitivity analysis was done to determine the independent and correlated contribu-
tions of rate parameters on cumulative damage. Area under the damage curve was chosen as
the system output. To reduce the computational cost of GSA, Random Sampling High Dimen-
sional Model Representation (RS-HDMR) approach was used [74]. Here, a multivariate output
function (eg. AUCD) was approximately represented by weighted optimal expansion functions
(called as component functions). The expansion coefficients of these functions were deter-
mined by least-squares regression simultaneously from one set of Monte Carlo samples. In
general, for input vector, �x ¼ ½x1; x2; . . . ; xn� of rate parameters, in an n–dimensional space, a
multivariate output function, f ð�xÞ, is approximated by a sum of terms including the mean (f0)
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and the component functions (gl). Mathematically,

f ð�xÞ ¼ f0 þ
X2n�1

l¼1

gl

Here, the index l indicates all possible combinations of the input parameters. In practice,
not all component functions are significant and an F-test can be used to determine which com-
ponent function should be excluded from the expansion [75]. For our work, we evaluated the
variance based Sobol’ indices using these component functions. The workflow adopted here
starts with generation of Monte Carlo samples of the rate parameters from the ensembles
obtained by the parallel tempering approach. Since they come from the ensemble, information
on the covariance between the parameter distributions for the population of survivors and
non-survivors is retained. Next, a detailed procedure is followed which includes simultaneous
construction of all the component functions, removal of non-significant component functions
using an F-test ratio score, re-evaluation of component functions and finally evaluation of the
Sobol’ sensitivity indices. The first order Sobol’ sensitivity indices which capture the influence
of a single parameter (but averaged over the other parameters) are defined as:

Sl ¼
Covðf ð�xÞ; glð�xÞÞ

s2
; l ¼ 1; 2; 3; . . . :; n

Here, σ2 is the total variance in the output and Cov(•) is the covariance between the output
function and each of the first order component functions. For clarity, the component function,
gl, is written as a function of �x but in reality it is only a function of the input parameter for
which it is defined (for example, xl) and not the entire vector. Further, this sensitivity index is a
sum of two terms that capture independent (Sal ) and correlated contributions (S

b
l ) of the input,

which are defined as:

Sal ¼
hglð�xÞ; glð�xÞi

s2

and

Sbl ¼

Xn
k¼1
k 6¼l

hglð�xÞ; gkð�xÞi

s2
:

The inner products, h•i, are defined as:
hgkð�xÞ; glð�xÞi ¼

Z
x1

. . .

Z
xn

wð�xÞgkð�xÞglð�xÞdx1 . . . dxn and wð�xÞ is the probability density

function of the inputs informed by the parameter ensembles. Similar equations can be written
for the higher order component functions and sensitivity indices. Further details on the evalua-
tion of the component function for various types of models are given in [74,76,77]. To deter-
mine the importance of a given parameter, it is necessary to combine all the important
sensitivity indices (all orders) into a total sensitivity index, which for a parameter i can be
defined as:

STi ¼ Si þ
Xn
j¼1
j 6¼i

Sij þ
Xn
j<k¼1
j;k 6¼i

Sijk þ . . . :::
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For most systems, very high order interactions are negligible and therefore, indices until the
third order are sufficient, with most systems requiring only until the second order terms [74].
In this work, we constructed a third order RS-HDMR. All GSA computations were performed
using the ExploreHD software (Aerodyne Research Inc., MA, USA).

Treatment framework
Treatment implementation. After model fitting and analysis, a potential extracorporeal

treatment was introduced (See Fig 7). The extracorporeal treatment directly modulates CXCR-
1/2 levels of circulating neutrophils, limiting passage of NB to NK and NM. This mechanism of
limiting CXCR-1/2 surface levels is modeled solely in the receptor level equations of the model.
A heaviside function is used to turn treatment on and off at various treatment times. The kft1
parameter represents treatment effectiveness, which combines device size, efficacy, efficiency
and flow rate. Eq (14) is the modified CXCR-1 surface receptor equation which includes the
Heaviside function. Eq (15) characterizes the trapped receptor state of CXCR-1. Similarly Eq
(16) and Eq (17) are constructed for CXCR-2 and its associated trapped receptor state.

dCR1s

dt
¼ kf 1CIL8ð1� CR1s � CR1i � CR1tÞ � kr1CR1s � ki1CR1s þ kft10CR1t

� Heavisideðt; ktreat�on; ktreat�off Þkft1ð1� CR1s � CR1i � CR1tÞ
ð14Þ

dCR1t

dt
¼ Heavisideðt; ktreat�on; ktreat�offÞkft1ð1� CR1s � CR1i � CR1tÞ � kft10CR1t ð15Þ

dCR2s

dt
¼ kf 2CIL8ð1� CR2s � CR2i � CR2tÞ � kr2CR2s � ki2CR2s þ kft20CR2t

� Heavisideðt; ktreat�on; ktreat�off Þkft2ð1� CR2s � CR2i � CR2tÞ
ð16Þ

dCR2t

dt
¼ Heavisideðt; ktreat�on; ktreat�offÞkft2ð1� CR2s � CR2i � CR2tÞ � kft20CR2t ð17Þ

Classification of patient outcome. In order to implement and evaluate treatment frame-
works, simulated patient survivorship needed to be explicitly labeled. This was accomplished
using a logistic regression classifier as specified by the machine learning software Weka [78].
The estimated parameter ensemble was partitioned into a training set and test set to build the
classifier, using 20% of the ensemble as training data. Two features were used for training, total
accumulated damage measured by area under the curve of the damage time course for each
patient, as well as the peak damage experienced by the patient. Training with these features
resulted in a classifier that could label a patient as surviving or dying after being exposed to a
specific infection and possible treatment.

Supporting Information
S1 Fig. Model predictions of receptor dynamics following infection.Mean (red), 25th-75th

percentile (dark blue), and 5th-95th percentile trajectories of the simulated ensemble are shown.
Predictions are shown for the CXCR1 (A-B) and CXCR2 (C-D) bound to IL-8 and actively sig-
naling from the cell surface, as well as internalized and unable to signal.
(TIF)
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S2 Fig. Effects of varying Nk decay rates on simulated treatment. Survival rates of a simu-
lated population of animals following treatment with the proposed extracorporeal device con-
sidering a device-receptor affinity of 1x10-3 M for k_Nk values of (A) 50% above, (B) 10%
above, (D) 10% below, and (E) 50% below the baseline vale (C). In all cases the time of treat-
ment was varied between 0 and 10 hours post infection and ended between 0 and 100 hours
post infection.
(TIF)

S3 Fig. Effects of varying Nk induction rates on simulated treatment. Survival rates of a sim-
ulated population of animals following treatment with the proposed extracorporeal device con-
sidering a device-receptor affinity of 1x10-3 M for k_Nk_IL8 values of (A) 50% above, (B) 10%
above, (D) 10% below, and (E) 50% below the baseline estimated value (C). In all cases the
time of treatment was varied between 0 and 10 hours post infection and ended between 0 and
100 hours post infection.
(TIF)

S1 Dataset. Experimental data. Sixteen baboons (Papio ursinus) weighing between 19 and 32
kg were infused with 2 x 109 CFU Escherichia coli per kg over a two-hour period and followed
until predetermined time points or death.
(XLS)
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