15 research outputs found

    Influence of low-order room reflections on sound zone system performance.

    No full text
    Studies on sound field control methods able to create independent listening zones in a single acoustic space have recently been undertaken due to the potential of such methods for various practical applications, such as individual audio streams in home entertainment. Existing solutions to the problem have shown to be effective in creating high and low sound energy regions under anechoic conditions. Although some case studies in a reflective environment can also be found, the capabilities of sound zoning methods in rooms have not been fully explored. In this paper, the influence of low-order (early) reflections on the performance of key sound zone techniques is examined. Analytic considerations for small-scale systems reveal strong dependence of performance on parameters such as source positioning with respect to zone locations and room surfaces, as well as the parameters of the receiver configuration. These dependencies are further investigated through numerical simulation to determine system configurations which maximize the performance in terms of acoustic contrast and array control effort. The design rules for source and receiver positioning are suggested, for improved performance under a given set of constraints such as a number of available sources, zone locations, and the direction of the dominant reflection

    Performance of optimized sound field control techniques in simulated and real acoustic environments.

    No full text
    It is of interest to create regions of increased and reduced sound pressure ('sound zones') in an enclosure such that different audio programs can be simultaneously delivered over loudspeakers, thus allowing listeners sharing a space to receive independent audio without physical barriers or headphones. Where previous comparisons of sound zoning techniques exist, they have been conducted under favorable acoustic conditions, utilizing simulations based on theoretical transfer functions or anechoic measurements. Outside of these highly specified and controlled environments, real-world factors including reflections, measurement errors, matrix conditioning and practical filter design degrade the realizable performance. This study compares the performance of sound zoning techniques when applied to create two sound zones in simulated and real acoustic environments. In order to compare multiple methods in a common framework without unduly hindering performance, an optimization procedure for each method is first used to select the best loudspeaker positions in terms of robustness, efficiency and the acoustic contrast deliverable to both zones. The characteristics of each control technique are then studied, noting the contrast and the impact of acoustic conditions on performance

    Influence of low-order room reflections on sound zone system performance.

    No full text
    Studies on sound field control methods able to create independent listening zones in a single acoustic space have recently been undertaken due to the potential of such methods for various practical applications, such as individual audio streams in home entertainment. Existing solutions to the problem have shown to be effective in creating high and low sound energy regions under anechoic conditions. Although some case studies in a reflective environment can also be found, the capabilities of sound zoning methods in rooms have not been fully explored. In this paper, the influence of low-order (early) reflections on the performance of key sound zone techniques is examined. Analytic considerations for small-scale systems reveal strong dependence of performance on parameters such as source positioning with respect to zone locations and room surfaces, as well as the parameters of the receiver configuration. These dependencies are further investigated through numerical simulation to determine system configurations which maximize the performance in terms of acoustic contrast and array control effort. The design rules for source and receiver positioning are suggested, for improved performance under a given set of constraints such as a number of available sources, zone locations, and the direction of the dominant reflection

    The influence of regularization on anechoic performance and robustness of sound zone methods.

    No full text
    Recent attention to the problem of controlling multiple loudspeakers to create sound zones has been directed toward practical issues arising from system robustness concerns. In this study, the effects of regularization are analyzed for three representative sound zoning methods. Regularization governs the control effort required to drive the loudspeaker array, via a constraint in each optimization cost function. Simulations show that regularization has a significant effect on the sound zone performance, both under ideal anechoic conditions and when systematic errors are introduced between calculation of the source weights and their application to the system. Results are obtained for speed of sound variations and loudspeaker positioning errors with respect to the source weights calculated. Judicious selection of the regularization parameter is shown to be a primary concern for sound zone system designers-the acoustic contrast can be increased by up to 50 dB with proper regularization in the presence of errors. A frequency-dependent minimum regularization parameter is determined based on the conditioning of the matrix inverse. The regularization parameter can be further increased to improve performance depending on the control effort constraints, expected magnitude of errors, and desired sound field properties of the system

    Performance of optimized sound field control techniques in simulated and real acoustic environments.

    Get PDF
    It is of interest to create regions of increased and reduced sound pressure ('sound zones') in an enclosure such that different audio programs can be simultaneously delivered over loudspeakers, thus allowing listeners sharing a space to receive independent audio without physical barriers or headphones. Where previous comparisons of sound zoning techniques exist, they have been conducted under favorable acoustic conditions, utilizing simulations based on theoretical transfer functions or anechoic measurements. Outside of these highly specified and controlled environments, real-world factors including reflections, measurement errors, matrix conditioning and practical filter design degrade the realizable performance. This study compares the performance of sound zoning techniques when applied to create two sound zones in simulated and real acoustic environments. In order to compare multiple methods in a common framework without unduly hindering performance, an optimization procedure for each method is first used to select the best loudspeaker positions in terms of robustness, efficiency and the acoustic contrast deliverable to both zones. The characteristics of each control technique are then studied, noting the contrast and the impact of acoustic conditions on performance
    corecore