84 research outputs found

    Sequential CCR5-Tropic HIV-1 Reactivation from Distinct Cellular Reservoirs following Perturbation of Elite Control

    Get PDF
    Background HIV Elite Controllers may reveal insights into virus persistence given they harbour small reservoir sizes, akin to HIV non-controllers treated early with combination antiretroviral therapy. Both groups of patients represent the most promising candidates for interventions aimed at sustained remission or ‘cure’. Analytic treatment interruption (ATI) in the latter group leads to stochastic rebound of virus, though it is unclear whether loss of elite control is also associated with similar rebound characteristics. Methods We studied three discrete periods of virus rebound during myeloma related immune disruption over 2.5 years in an elite controller who previously underwent autologous stem cell transplantation (ASCT) in the absence of any antiretroviral therapy. Single genome sequencing of the V1-V4 region of env in PBMC and plasma was performed and phylogenies reconstructed. Average pairwise distance (APD) was calculated and non-parametric methods used to assess compartmentalisation. Coreceptor usage was predicted based on genotypic algorithms. Results 122 single genome sequences were obtained (median 26 sequences per rebound). The initial rebounding plasma env sequences following ASCT represented two distinct lineages, and clustered with proviral DNA sequences isolated prior to ASCT. One of the lineages was monophyletic, possibly indicating reactivation from clonally expanded cells. The second rebound occurred 470 days after spontaneous control of the first rebound and was phylogenetically distinct from the first, confirmed by compartmentalisation analysis, with a different cellular origin rather than ongoing replication. By contrast, third rebound viruses clustered with second rebound viruses, with evidence for ongoing evolution that was associated with lymphopenia and myeloma progression. Following ASCT a shift in tropism from CXCR4-tropic viruses to a CCR5-tropic population was observed to persist through to the third rebound. Conclusions Our data highlight similarities in the viral reservoir between elite and non-controllers undergoing ATI following allogeneic transplantation. The lack of propagation of CXCR4 using viruses following transplantation warrants further study

    DNA damage induced by topoisomerase inhibitors activates SAMHD1 and blocks HIV-1 infection of macrophages

    Get PDF
    We report that DNA damage induced by topoisomerase inhibitors, including etoposide (ETO), results in a potent block to HIV-1 infection in human monocyte-derived macrophages (MDM). SAMHD1 suppresses viral reverse transcription (RT) through depletion of cellular dNTPs but is naturally switched off by phosphorylation in a subpopulation of MDM found in a G1-like state. We report that SAMHD1 was activated by dephosphorylation following ETO treatment, along with loss of expression of MCM2 and CDK1, and reduction in dNTP levels. Suppression of infection occurred after completion of viral DNA synthesis, at the step of 2LTR circle and provirus formation. The ETO-induced block was completely rescued by depletion of SAMHD1 in MDM Concordantly, infection by HIV-2 and SIVsm encoding the SAMHD1 antagonist Vpx was insensitive to ETO treatment. The mechanism of DNA damage-induced blockade of HIV-1 infection involved activation of p53, p21, decrease in CDK1 expression, and SAMHD1 dephosphorylation. Therefore, topoisomerase inhibitors regulate SAMHD1 and HIV permissivity at a post-RT step, revealing a mechanism by which the HIV-1 reservoir may be limited by chemotherapeutic drugs

    Vpx complementation of 'non-macrophage tropic' R5 viruses reveals robust entry of infectious HIV-1 cores into macrophages.

    Get PDF
    Background It is now known that clinically derived viruses are most commonly R5 tropic with very low infectivity in macrophages. As these viruses utilize CD4 inefficiently, defective entry has been assumed to be the dominant restriction. The implication is that macrophages are not an important reservoir for the majority of circulating viruses. Results Macrophage infection by clinical transmitted/founder isolates was 10-100 and 30-450 fold less efficient as compared to YU-2 and BaL respectively. Vpx complementation augmented macrophage infection by non-macrophage tropic viruses to the level of infectivity observed for YU-2 in the absence of Vpx. Augmentation was evident even when Vpx was provided 24 hours post-infection. The entry defect was measured as 2.5-5 fold, with a further 3.5-10 fold block at strong stop and subsequent stages of reverse transcription as compared to YU-2. The overall block to infection was critically dependent on the mechanism of entry as demonstrated by rescue of infection after pseudotyping with VSV-G envelope. Reverse transcription in macrophages could not be enhanced using a panel of cytokines or lipopolysaccharide (LPS). Conclusions Although the predominant block to clinical transmitted/founder viruses is post-entry, infectivity is determined by Env-CD4 interactions and can be rescued with VSV-G pseudotyping. This suggests a functional link between the optimal entry pathway taken by macrophage tropic viruses and downstream events required for reverse transcription. Consistent with a predominantly post-entry block, replication of R5 using viruses can be greatly enhanced by Vpx. We conclude therefore that entry is not the limiting step and that macrophages represent clinically relevant reservoirs for ‘non-macrophage tropic’ viruses

    The HUSH complex is a gatekeeper of type I interferon through epigenetic regulation of LINE-1s

    Get PDF
    The Human Silencing Hub (HUSH) complex is necessary for epigenetic repression of LINE-1 elements. We show that HUSH-depletion in human cell lines and primary fibroblasts leads to induction of interferon-stimulated genes (ISGs) through JAK/STAT signaling. This effect is mainly attributed to MDA5 and RIG-I sensing of double-stranded RNAs (dsRNAs). This coincides with upregulation of primate-conserved LINE-1s, as well as increased expression of full-length hominid-specific LINE-1s that produce bidirectional RNAs, which may form dsRNA. Notably, LTRs nearby ISGs are derepressed likely rendering these genes more responsive to interferon. LINE-1 shRNAs can abrogate the HUSH-dependent response, while overexpression of an engineered LINE-1 construct activates interferon signaling. Finally, we show that the HUSH component, MPP8 is frequently downregulated in diverse cancers and that its depletion leads to DNA damage. These results suggest that LINE-1s may drive physiological or autoinflammatory responses through dsRNA sensing and gene-regulatory roles and are controlled by the HUSH complex

    Immune evasion activities of accessory proteins Vpu, Nef and Vif are conserved in acute and chronic HIV-1 infection

    Get PDF
    Heterosexual HIV-1 transmission has been identified as a genetic bottleneck and a single transmitted/founder (T/F) variant with reduced sensitivity to type I interferon initiates productive infection in most cases. We hypothesized that particularly active accessory protein(s) may confer T/F viruses with a selective advantage in establishing HIV infection. Thus, we tested vpu, vif and nef alleles from six T/F and six chronic (CC) viruses in assays for 9 immune evasion activities involving the counteraction of interferon-stimulated genes and modulation of ligands known to activate innate immune cells. All functions were highly conserved with no significant differences between T/F and CC viruses, suggesting that these accessory protein functions are important throughout the course of infection

    A G1-like state allows HIV-1 to bypass SAMHD1 restriction in macrophages

    Get PDF
    An unresolved question is how HIV‐1 achieves efficient replication in terminally differentiated macrophages despite the restriction factor SAMHD1. We reveal inducible changes in expression of cell cycle‐associated proteins including MCM2 and cyclins A, E, D1/D3 in macrophages, without evidence for DNA synthesis or mitosis. These changes are induced by activation of the Raf/MEK/ERK kinase cascade, culminating in upregulation of CDK1 with subsequent SAMHD1 T592 phosphorylation and deactivation of its antiviral activity. HIV infection is limited to these G1‐like phase macrophages at the single‐cell level. Depletion of SAMHD1 in macrophages decouples the association between infection and expression of cell cycle‐associated proteins, with terminally differentiated macrophages becoming highly susceptible to HIV‐1. We observe both embryo‐derived and monocyte‐derived tissue‐resident macrophages in a G1‐like phase at frequencies approaching 20%, suggesting how macrophages sustain HIV‐1 replication in vivo. Finally, we reveal a SAMHD1‐dependent antiretroviral activity of histone deacetylase inhibitors acting via p53 activation. These data provide a basis for host‐directed therapeutic approaches aimed at limiting HIV‐1 burden in macrophages that may contribute to curative interventions

    Selfish mutations dysregulating RAS-MAPK signaling are pervasive in aged human testes

    Get PDF
    Mosaic mutations present in the germline have important implications for reproductive risk and disease transmission. We previously demonstrated a phenomenon occurring in the male germline, whereby specific mutations arising spontaneously in stem cells (spermatogonia) lead to clonal expansion, resulting in elevated mutation levels in sperm over time. This process, termed selfish spermatogonial selection, explains the high spontaneous birth prevalence and strong paternal age-effect of disorders such as achondroplasia, Apert, Noonan and Costello syndromes, with direct experimental evidence currently available for specific positions of six genes (FGFR2, FGFR3, RET, PTPN11, HRAS and KRAS). We present a discovery screen to identify novel mutations and genes showing evidence of positive selection in the male germline, by performing massively parallel simplex PCR using RainDance technology to interrogate mutational hotspots in 67 genes (51.5 kb in total) in 276 biopsies of testes from 5 men (median age: 83 years). Following ultra-deep sequencing (~16,000x), development of a low-frequency variant prioritization strategy and targeted validation, we identified 61 distinct variants present at frequencies as low as 0.06%, including 54 variants not previously directly associated with selfish selection. The majority (80%) of variants identified have previously been implicated in developmental disorders and/or oncogenesis and include mutations in six newly associated genes (BRAF, CBL, MAP2K1, MAP2K2, RAF1 and SOS1), all of which encode components of RAS-MAPK pathway and activate signaling. Our findings extend the link between mutations dysregulating the RAS-MAPK pathway and selfish selection, and show that the ageing male germline is a repository for such deleterious mutations

    Combined Point-of-Care Nucleic Acid and Antibody Testing for SARS-CoV-2 following Emergence of D614G Spike Variant

    Get PDF
    Rapid COVID-19 diagnosis in the hospital is essential, although this is complicated by 30%-50% of nose/throat swabs being negative by SARS-CoV-2 nucleic acid amplification testing (NAAT). Furthermore, the D614G spike mutant dominates the pandemic and it is unclear how serological tests designed to detect anti-spike antibodies perform against this variant. We assess the diagnostic accuracy of combined rapid antibody point of care (POC) and nucleic acid assays for suspected COVID-19 disease due to either wild-type or the D614G spike mutant SARS-CoV-2. The overall detection rate for COVID-19 is 79.2% (95% CI 57.8-92.9) by rapid NAAT alone. The combined point of care antibody test and rapid NAAT is not affected by D614G and results in very high sensitivity for COVID-19 diagnosis with very high specificity

    SARS-CoV-2 evolution during treatment of chronic infection

    Get PDF
    The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for virus infection through the engagement of the human ACE2 protein1 and is a major antibody target. Here we show that chronic infection with SARS-CoV-2 leads to viral evolution and reduced sensitivity to neutralizing antibodies in an immunosuppressed individual treated with convalescent plasma, by generating whole-genome ultra-deep sequences for 23 time points that span 101 days and using in vitro techniques to characterize the mutations revealed by sequencing. There was little change in the overall structure of the viral population after two courses of remdesivir during the first 57 days. However, after convalescent plasma therapy, we observed large, dynamic shifts in the viral population, with the emergence of a dominant viral strain that contained a substitution (D796H) in the S2 subunit and a deletion (ΔH69/ΔV70) in the S1 N-terminal domain of the spike protein. As passively transferred serum antibodies diminished, viruses with the escape genotype were reduced in frequency, before returning during a final, unsuccessful course of convalescent plasma treatment. In vitro, the spike double mutant bearing both ΔH69/ΔV70 and D796H conferred modestly decreased sensitivity to convalescent plasma, while maintaining infectivity levels that were similar to the wild-type virus.The spike substitution mutant D796H appeared to be the main contributor to the decreased susceptibility to neutralizing antibodies, but this mutation resulted in an infectivity defect. The spike deletion mutant ΔH69/ΔV70 had a twofold higher level of infectivity than wild-type SARS-CoV-2, possibly compensating for the reduced infectivity of the D796H mutation. These data reveal strong selection on SARS-CoV-2 during convalescent plasma therapy, which is associated with the emergence of viral variants that show evidence of reduced susceptibility to neutralizing antibodies in immunosuppressed individuals

    SARS-CoV-2 evolution during treatment of chronic infection

    Get PDF
    SARS-CoV-2 Spike protein is critical for virus infection via engagement of ACE21, and is a major 54 antibody target. Here we report chronic SARS-CoV-2 with reduced sensitivity to neutralising 55 antibodies in an immune suppressed individual treated with convalescent plasma, generating 56 whole genome ultradeep sequences over 23 time points spanning 101 days. Little change was 57 observed in the overall viral population structure following two courses of remdesivir over the 58 first 57 days. However, following convalescent plasma therapy we observed large, dynamic 59 virus population shifts, with the emergence of a dominant viral strain bearing D796H in S2 and 60 H69/V70 in the S1 N-terminal domain NTD of the Spike protein. As passively transferred 61 serum antibodies diminished, viruses with the escape genotype diminished in frequency, before 62 returning during a final, unsuccessful course of convalescent plasma. In vitro, the Spike escape 63 double mutant bearing H69/V70 and D796H conferred modestly decreased sensitivity to 64 convalescent plasma, whilst maintaining infectivity similar to wild type. D796H appeared to be 65 the main contributor to decreased susceptibility but incurred an infectivity defect. The 66 H69/V70 single mutant had two-fold higher infectivity compared to wild type, possibly 67 compensating for the reduced infectivity of D796H. These data reveal strong selection on SARS68 CoV-2 during convalescent plasma therapy associated with emergence of viral variants with 69 evidence of reduced susceptibility to neutralising antibodies.COG-UK is supported by funding from the Medical Research Council (MRC) part of UK Research & Innovation (UKRI), the National Institute of Health Research (NIHR) and Genome Research Limited, operating as the Wellcome Sanger Institute
    corecore