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Abstract

An unresolved question is how HIV-1 achieves efficient replication
in terminally differentiated macrophages despite the restriction
factor SAMHD1. We reveal inducible changes in expression of cell
cycle-associated proteins including MCM2 and cyclins A, E, D1/D3
in macrophages, without evidence for DNA synthesis or mitosis.
These changes are induced by activation of the Raf/MEK/ERK
kinase cascade, culminating in upregulation of CDK1 with subse-
quent SAMHD1 T592 phosphorylation and deactivation of its
antiviral activity. HIV infection is limited to these G1-like phase
macrophages at the single-cell level. Depletion of SAMHD1 in
macrophages decouples the association between infection and
expression of cell cycle-associated proteins, with terminally dif-
ferentiated macrophages becoming highly susceptible to HIV-1.
We observe both embryo-derived and monocyte-derived tissue-
resident macrophages in a G1-like phase at frequencies approach-
ing 20%, suggesting how macrophages sustain HIV-1 replication
in vivo. Finally, we reveal a SAMHD1-dependent antiretroviral
activity of histone deacetylase inhibitors acting via p53 activation.
These data provide a basis for host-directed therapeutic
approaches aimed at limiting HIV-1 burden in macrophages that
may contribute to curative interventions.
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Introduction

SAMHD1, a deoxynucleotide-triphosphate (dNTP) hydrolase,

restricts HIV-1 reverse transcription (RT) through decreasing levels

of dNTPs (Goldstone et al, 2011; Lahouassa et al, 2012; Schmidt

et al, 2015). SAMHD1 phosphorylation at position T592 mediated

by cyclin-dependent kinases CDK1/2 (Cribier et al, 2013; White

et al, 2013) in actively dividing cells impairs the dNTP hydrolase

activity and allows viral DNA synthesis to occur (Cribier et al, 2013;

Arnold et al, 2015). Some lentiviruses have evolved counter-

measures against SAMHD1; for example, the HIV-2/SIVsm lineage

encodes the Vpx protein that degrades SAMHD1 and allows infec-

tion of otherwise SAMHD1-positive target cells (Kaushik et al, 2009;

Hrecka et al, 2011; Laguette et al, 2011). How pandemic HIV-1

strains achieve efficient infection of terminally differentiated macro-

phages in vivo without a Vpx-like activity has remained a significant

unresolved question that has limited our understanding of HIV

tropism and pathogenesis (Watters et al, 2013).

Here, we reveal dynamic expression of cell cycle-associated

proteins in non-dividing macrophages that do not culminate in DNA

synthesis or mitosis. These changes are dependent on the canonical

mitogen/growth factor-activated Raf/MEK/ERK signalling pathway

and are sufficient to deactivate the potent HIV-1 restriction mediated

by SAMHD1. Moreover, we show in two distinct populations of

tissue-resident macrophages in mice that 20% of cells express a G1-

like activation profile, providing not only an explanation for the

ability of macrophages to sustain high levels of HIV-1 replication

but also offering a therapeutic target for limiting HIV-1 burden in

these vital innate immune cells.
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Results

Terminally differentiated macrophages stimulated to enter a G1-
like phase are highly susceptible to HIV-1 infection

We observed that culture of human monocyte-derived macrophages

(MDM) in foetal calf serum/FCS (stimulated cells), as opposed to

human serum/HS (unstimulated cells), led to a significant increase

in permissivity to HIV-1 infection (Figs 1A–C and EV1A–E). As

expected, there was significant donor variation in absolute permis-

sivity to HIV (Fig EV1B). An increase in viral permissivity under

stimulating conditions was observed for single-round VSV-G-

pseudotyped HIV-1 virus (Figs 1A and EV1A and B) and full-length

infectious HIV-1 molecular clones (Figs 1B and C, and EV1C and D),

including macrophage tropic viruses (BaL, YU-2), clinical HIV-1

isolates (Fig EV1C and D) and HIV-1 with capsid mutations known

to alter interactions with cyclophilin and CPSF6 leading to altered

reverse transcription, retargeted integration and triggering of innate

sensing (Fig EV1E). The infection enhancement was observed post-

entry at the step of reverse transcription (Figs 1B and EV1F). The

effect of FCS on infection was lost when charcoal-stripped FCS was

used but not when boiled FCS or a human serum/foetal calf serum

mixture (1:1) was used, suggesting the existence of a heat stable

stimulatory factor in FCS rather than an inhibitory factor in HS

(Fig EV1A).

The differential effects of FCS and HS suggested an approach to

uncovering mechanisms regulating HIV-1 permissivity in macro-

phages. We compared the transcriptomes of MDM differentiated in

HS (unstimulated cells, UNSTIM) or FCS (stimulated cells, STIM)

aiming to discover signalling pathways that contribute to higher

HIV-1 permissivity. Comparison of transcriptional profiles for a

predefined gene signature that discriminates macrophages from

other cell types (Tomlinson et al, 2012) clearly shows that HS and

FCS cultured MDM cluster together and are distinct from closely

related myeloid cells (Fig 1D). Moreover, they express similar

macrophage markers (Fig EV2). However, use of ingenuity pathway

analysis to evaluate genes associated with high permissivity to HIV-1

infection revealed enrichment in a number of molecular/cellular

functions including cell cycle regulation, growth and proliferation,

and cell death or survival (Fig 1E). The top canonical pathway was

enriched for genes encoding proteins involved in cell cycle regula-

tion including cyclins (Figs 1F and EV3A, and Table EV1). These

observations were validated at the protein expression level (Fig 1G).

Stimulated cells showed an increase in D-type cyclins D1 and D3,

which accumulate as cells progress through G1 phase (Baldin et al,

1993; Sherr, 1993, 1996). Cyclin D2 was below detectable levels

under both conditions (Fig 1G). We also observed an increase in

cyclins A and E, E2F6 and Geminin—all known to accumulate

during cell cycle entry (Coverley et al, 2002; Bertoli et al, 2013;

Fragkos et al, 2015). Of note, CDK1—a key player in cell cycle

progression—was also upregulated in stimulated cells, along with

MCM2 (minichromosome maintenance complex component 2)

(Fig 1G and H), a replication origin licensing factor that is expressed

from G1 (but not in G0) (Baldin et al, 1993; Sherr, 1996; Su &

O’Farrell, 1997; Tsuruga et al, 1997; Musahl et al, 1998; Stoeber

et al, 1998, 2001; Williams et al, 1998). Importantly, p27 expression

was reduced following MDM stimulation (Fig 1G). p27 is a cyclin-

dependent kinase inhibitor which is highly expressed in quiescent

cells and which decreases after cell cycle re-entry (Sherr & Roberts,

1999).

We further compared stimulated and unstimulated cells at the

single-cell level for expression of cell cycle-associated proteins,

which are absent in G0/quiescent/terminally differentiated cells but

(i) are found at all cell cycle phases (MCM2) (Masai et al, 2010), (ii)

that accumulate in S and G2/M phases (Geminin) (Fragkos et al,

2015) and (iii) are specific to active DNA synthesis in cells and

therefore a marker of S phase (EdU incorporation) (Fig 1H). Single

cell-imaging analysis using an automated microscopic platform

(Fig EV3B) showed a specific increase in each marker in stimulated

versus unstimulated cells. The absolute number of cells positive for

MCM2 was fivefold to 10-fold higher than cells positive for the S-

G2-M marker Geminin (Fig 1H). Together with observed low levels

of EdU incorporation over a 50-h period, these data suggest that

stimulated MDM re-entered the cell cycle but the majority did not

progress to S, G2/M phase (Figs 1H and EV3C). We confirmed

further that stimulated MDM did not divide using classical propid-

ium iodide (PI) and CFSE staining (Figs 1I and J, and EV3D). These

data suggest that MDM are in a G0/quiescent/terminally differenti-

ated state and that they are able to modulate expression of cell

cycle-associated proteins, without measurable cell division or DNA

synthesis. These early changes are consistent with transition to a

G1-like phase and are associated with increased permissivity to

HIV-1 infection in cultured MDM.

Transition to a G1-like state is sufficient to regulate SAMHD1
antiviral activity in terminally differentiated macrophages

Given the known association between SAMHD1, a well-described

HIV-1 restriction factor in myeloid cells and the cell cycle (Cribier

et al, 2013; White et al, 2013; Pauls et al, 2014; Yan et al, 2015), we

hypothesised that SAMHD1 antiviral activity might be regulated

spontaneously in human MDM. To test this, we examined CDK1/2

expression knowing that CDK1/2 phosphorylates SAMHD1 to deacti-

vate its capacity to restrict infection (Cribier et al, 2013; Welbourn

et al, 2013; White et al, 2013). We found raised expression levels of

CDK1 and pSAMHD1-T592 in stimulated MDM, but not CDK2, CDK4

or CDK6 (Fig 2A). dNTP levels were also increased by threefold to

fourfold in stimulated MDM (Fig EV3E), also consistent with the

reported activity of SAMHD1 (Lahouassa et al, 2012). Furthermore,

exogenously induced degradation of SAMHD1 by co-infection with

SIVmac virus-like particles bearing Vpx (VLP-vpx) (Fig 2B), or deple-

tion of SAMHD1 by siRNA transfection (Fig 2C) led to a 10-fold

increase in HIV-1 infectivity specifically in unstimulated MDM, with

no change in infection in the permissive stimulated MDM where

SAMHD1 is phosphorylated and thus already inactive against HIV-1.

To probe the reversibility of regulation of CDK1/2 and SAMHD1

in MDM, we changed serum 3 days before infection from unstimu-

lating HS to stimulating FCS, and vice versa (Fig 2D and E). Non-

stimulating conditions from day 3 onwards [unstim (day 3), Fig 2D

and E] reduced MCM2 and CDK1 expressions (indicative of cells

returning to a quiescent state), with decreased SAMHD1 phosphory-

lation and HIV-1 infection. Conversely, stimulating conditions from

day 3 [stim (day 3), Fig 2D and E] or from day 7 (Fig EV3F)

augmented HIV-1 infection and was associated with increased

MCM2/CDK1 expression (indicative of cells re-entering the G1-like

state) and SAMHD1 phosphorylation. No significant changes were
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observed for CDK2 expression or phosphorylation (Fig 2E). These

data suggest that this process is reversible in terminally differenti-

ated macrophages.

To further explore the regulation of SAMHD1 in MDM, we

mapped the signalling pathway responsible for SAMHD1 phosphory-

lation by using well-characterised specific inhibitors of kinases

A

E F G

H I J

B C D

Figure 1. Transitioning from G0- to a G1-like phase in terminally differentiated monocyte-derived macrophages (MDM).

A MDM were differentiated and cultured in RPMI complemented with MCSF and 10% human serum (unstim) or with MCSF and 10% foetal calf serum (stim). MDM
were infected with VSV-G-pseudotyped HIV-1 expressing GFP, and the percentage of infected cells was quantified 48 h post-infection by FACS (n = 3, mean � s.e.m.;
**P-value ≤ 0.01, unpaired t-test).

B MDM were infected with HIV-1 BaL and DNA isolated 18 h post-infection for qPCR of late viral RT products (n = 3, mean � s.e.m.; *P-value ≤ 0.05, unpaired t-test).
C Spreading infection in MDM. Cells were infected with HIV-1 BaL, stained for intracellular p24 and quantified by FACS.
D Principal component analysis of expression data for macrophage-associated transcripts to compare relative clustering of stimulated and unstimulated MDM and a

range of primary cells/cell lines.
E Diagram of cellular and molecular functions associated with genes that show significant (�log2(P-value) > 2) transcriptional upregulation in stimulated MDM

compared to unstimulated MDM.
F Cell cycle-associated transcripts in stimulated and unstimulated MDM.
G Immunoblot of cell cycle-associated proteins expressed in MDM. Star indicates non-specific band. This Western blot quantification is from Donor 1 in Fig 2A. The

same blots were used in Fig 2A to allow comparison of different cell cycle-associated proteins, as well as SAMHD1.
H Uninfected MDM or MDM exposed for 48 h to VSV-G HIV-1 GFP (HIV-1 exposed) were stained for cell cycle-associated proteins MCM2, Geminin and EdU

incorporation (EdU added to MDM 50 h prior to analysis). On average, 104 cells in each experiment were recorded and analysed using Hermes WiScan cell-imaging
system and ImageJ. Diagram of the cell cycle pathway with associated markers is also shown.

I Cell cycle analysis by quantitation of DNA content by flow cytometry. Cycling THP-1 cells and both unstimulated and stimulated MDM were labelled by propidium
iodide (PI) and analysed by FACS.

J CFSE loaded MDM were cultured for 4 days to determine cell division/proliferation by FACS.

Source data are available online for this figure.
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Figure 2. Bidirectional transitions shape SAMHD1-mediated restriction of HIV-1.

A MDM from three donors (D1, D2, D3) were used for immunoblotting to detect SAMHD1 and CDK proteins. The blot for D1 is the same as that in Fig 1G in order to
facilitate comparison of different cell cycle-associated proteins and SAMHD1.

B MDM were co-infected with VSV-G HIV-1 GFP and SIVmac virus-like particles containing vpx (VLP-vpx). Cells from a representative donor were used for
immunoblotting. The percentage of infected cells was quantified by FACS 48 h post-infection (n = 2, mean � s.e.m.; **P-value ≤ 0.01; (ns) non-significant,
unpaired t-test).

C MDM were transfected with control or pool of SAMHD1 siRNAs and infected 3 days later with VSV-G-pseudotyped HIV-1 GFP. Cells from a representative donor
were used for immunoblotting. The percentage of infected cells was quantified by FACS 48 h post-infection (n = 2, mean � s.e.m.; **P-value ≤ 0.01; (ns) non-
significant, unpaired t-test).

D Experimental approach used to model MDM bidirectional G0–G1-like transitions. MDM were as follows: (unstim) cultured in HS or (stim) cultured in FCS as
described in Materials and Methods; [stim (day 3)] grown in HS conditions for 3 days and changed to stimulating FCS conditions for 3 days; [unstim (3 days)]
grown in stimulating FCS condition for the 3 days and changed to non-stimulating HS for the remaining 3 days.

E Single round of infection of MDM with full-length HIV-1 BaL. Cells were used for immunoblotting to detect CDKs, SAMHD1 and MCM2 proteins. Graph is a
representative example of n ≥ 3, mean � s.e.m.

F Proposed signalling pathway leading to SAMHD1 phosphorylation in stimulated MDM.
G, H Unstimulated (G) and stimulated (H) MDM were treated with inhibitors of RAF (2 lM), B-RAF (3 lM), MEK1/2 (AS-703026, 1 lM), JAK 1–3 (1 lM), GSK3 (2 lM), PIM

1–3 (3 lM) and CDK4/6 (1 lM) for 18 h before infection and infected with VSV-G HIV-1 GFP. The percentage of infected cells was quantified by FACS 48 h post-
infection. Graphs are representative example of n ≥ 3, mean � s.e.m., *P-value ≤ 0.05; **P-value ≤ 0.01; calculated from triplicates, unpaired t-test).

I MDM were treated with a MEK/ERK inhibitor (U0126, 10 lM) for 18 h before infection and where indicated VLP-vpx was added at the time of infection.
Percentage of infected cells were detected by FACS 48 h post-infection. Cells were used for immunoblotting to detect CDKs, SAMHD1 and MCM2 proteins (n = 3,
mean � s.e.m.; (ns) non-significant; ***P-value ≤ 0.001, unpaired t-test).

Source data are available online for this figure.
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(Fig 2F–I). We identified the involvement of the Raf/MEK/ERK

kinase cascade in the regulation of HIV restriction (Figs 2F–I and

EV3G). Of note, the B-Raf inhibitor PLX4032 (active only against the

V600E B-Raf mutant observed in cancer cells) was used as a nega-

tive control to demonstrate specificity of Raf inhibition (Fig 2G and

H). To pharmacologically block the putative signal activated by

FCS, we also used a highly specific inhibitor of MEK/ERK, U0126,

reasoning that this would lead to suppression of HIV-1 infection in a

SAMHD1-dependent manner (Fig 2F). Indeed, MEK/ERK inhibition

substantially inhibited HIV-1 infection of MDM, and loss of HIV-1

permissivity correlated with SAMHD1 dephosphorylation, CDK1

and MCM2 downregulation (Fig 2I). Critically, SAMHD1 depletion

by VLP-vpx (Fig 2I) completely rescued HIV-1 infection from the

inhibitory effect of U0126. This was further confirmed by inhibiting

the signalling pathway downstream from MEK/ERK using a specific

inhibitor of CDK4/6 (Fig EV3G). These data illustrate, for the first

time, that the Raf/MEK/ERK signalling pathway regulates SAMHD1

antiviral activity in terminally differentiated macrophages.

G1-like phase macrophages are preferential targets for HIV at
the single-cell level

We next employed a high-throughput single-cell co-localisation

analysis, aiming to measure the association between SAMHD1,

markers of cell cycle progression and HIV-1 infection at the single-

cell level (Fig 3). We infected MDM with VSV-G-pseudotyped

HIV-1 and 48 h post-infection stained the cells for MCM2 or for

EdU incorporation (added at the time of infection) to monitor

active DNA synthesis and analysed cells by using an automated

microscopic system (Fig 3A–E). As expected, we found that MCM2

expression correlated with HIV infection under both stimulatory

and non-stimulatory conditions (Fig 3A–C and G–J). This analysis

illustrated that macrophages in a G1-like state, measured by

MCM2 expression, are preferential targets for HIV at the single-cell

level. Stimulation by FCS simply increased the number of MCM2-

positive cells and therefore increased the number of permissive

target cells for HIV-1 infection (Fig 3B, C, E, G, and H). This

explains the increased permissivity of stimulated MDM cultures in

Fig 1A. Importantly, even though stimulatory conditions also

increased the number of cells positive for EdU incorporation

(Fig EV4A), the population of cells actively synthesising DNA was

a minority (< 7%) and this increase was not statistically signifi-

cant. As shown earlier, MDM very rarely divide, even under stim-

ulatory conditions (Figs 1I and J, and EV3D). As HIV infection did

not co-localise with EdU incorporation in single-cell analyses, we

conclude that entry into S phase and DNA synthesis is not

required for enhanced HIV-1 infection (Figs 3C and J, and EV4B),

consistent with a G1-like permissivity window.

Critically, degradation of SAMHD1, through co-infection with

SIVmac VLP-vpx, or SAMHD1 depletion using RNAi, completely

abrogated the association between infection of MDM and MCM2

expression (Figs 3D, E and G–J, and EV4C). Indeed, log odds ratios

comparing frequencies of HIV-1 infection in MCM2-positive and

MCM2-negative cells were high, indicating highly specific infection

of MCM2-positive cells, but not MCM2-negative cells. These log

odds ratios were significantly reduced after SAMHD1 depletion indi-

cating that SAMHD1 was responsible for the poor permissivity of

the MCM2-negative cells (Fig 3J). There was no such evidence for

preferential permissivity of Edu-positive cells (Fig 3J). Importantly,

Semliki Forest virus (SFV), an alpha virus with an RNA genome

which replication is dNTP-independent, did not preferentially infect

MDM expressing MCM2 (Figs 3F and J, and EV4D and E). As

predicted, infection of MDM by lentiviruses naturally encoding Vpx

genes (HIV-2, SIVsmE543) also showed significant reduction in log

odds ratios (Fig 3J).

Tissue-resident macrophages commonly reside in a G1-like phase
and are preferential HIV-1 targets

Human MDM are a widely used model for primary macrophages,

but their generation relies on in vitro differentiation from mono-

cytes. We therefore investigated whether tissue-resident macro-

phages could be observed in the G1-like state we describe and

whether this was associated with increased HIV-1 permissivity.

SAMHD1 is conserved in mice and has anti-HIV-1 activity (Behrendt

et al, 2013; Zhang et al, 2014) that, like human SAMHD1, is regu-

lated by phosphorylation (Wittmann et al, 2015). We first isolated

mouse microglia (tissue-resident, yolk sac-derived macrophages of

the brain) and observed between 5 and 20% of these cells express-

ing MCM2 immediately following isolation (Fig EV5). However,

MCM2 staining in microglia appeared to diminish rapidly following

isolation from brain tissue, precluding analysis of the correlation

between MCM2 and HIV-1 infection. We therefore isolated tissue-

resident peritoneal macrophages (of bone marrow origin) (Fig 4)

from both wild-type (WT) and SAMHD1 knock-out (KO) mice

(Rehwinkel et al, 2013). We infected these cells with VSV-G-pseudo-

typed HIV-1 and at 48 h post-infection inspected the cells for speci-

fic macrophage markers F4/80 and CD11b (Fig 4A and B), as well

as expression of MCM2 and EdU incorporation (Fig 4C–I). We

observed that 20% of macrophages from both SAMHD1 WT and KO

mice were positive for MCM2 (Fig 4C and H), but ≤ 1% of cells

incorporated EdU. As before, this suggested a G1-like state that does

not progress into S phase similar to the situation in human MDM

(Fig 4D and I). Critically, and as before, we observed preferential

infection of MCM2-positive cells from WT but not SAMHD1 negative

cells (Fig 4E–G, J and K). There was no correlation between infec-

tion and EdU in macrophages from either WT or KO mice (Fig 4K).

HDAC inhibitors induce a SAMHD1-dependent block to HIV-1 in
human MDM

Histone deacetylase inhibitors (HDACi) can reactivate latent HIV in

a variety of experimental systems (Wightman et al, 2012). HDACi

also induce cell cycle arrest and induce a differentiated phenotype

and/or apoptosis in most carcinoma cell lines (Marks et al, 2000;

Komatsu et al, 2006; West & Johnstone, 2014), but the effect of

these drugs on HIV infection in primary human macrophages is not

known. To test this, we treated MDM with increasing concentrations

of HDACi SAHA (vorinostat) or panobinostat, infected the cells with

VSV-G-pseudotyped HIV-1 and measured the percentage of infected

cells 48 h later. HDACi substantially inhibited HIV-1 infection of

both stimulated and unstimulated MDM (Figs 5A and EV6A) with

no observed cytotoxicity (Fig 5B). For all further experiments, we

used only stimulated MDM (Fig 5B–F), where the majority of cells

are in a G1-like phase and expressing MCM2 and inactive phospho-

rylated SAMHD1. Here, the loss of HIV-1 permissivity following
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HDACi treatment correlated with loss of MCM2 (Fig 5C and D),

CDK1 and SAMHD1 dephosphorylation, suggesting transition of

MDM from G1-phase to a non-permissive, inactive state (Fig 5D).

HDACi treatment of MDM was also associated with increased

expression of cell cycle regulators p27 and p53 (Figs 5D and EV6B)

(Sherr & Roberts, 1999; Wang et al, 2015). SAMHD1 depletion using

A

B

C

G H I J

D

E

F

Figure 3. HIV-1 tropism for G1-like MDM at the cellular level.

A–C MDM were infected with VSV-G-pseudotyped HIV-1 GFP, stained and recorded and analysed for infection, MCM2 expression and co-localisation between infection
and MCM2 protein and EdU incorporation 48 h post-infection using Hermes WiScan cell-imaging system. Random microscopic fields and plot profiles show an
example of immunofluorescence intensity along infected cells. Scale bars: 20 lm.

D, E MDM were infected with VSV-G-pseudotyped HIV-1 GFP in the presence of SIVmac virus-like particles containing vpx (VLP-vpx), stained and recorded 48 h post-
infection using Hermes WiScan cell-imaging system. Random microscopic fields and plot profile show an example of immunofluorescence intensity along infected
cells. Scale bars: 20 lm.

F MDM were infected with Semliki Forest virus (SFV). Random microscopic fields and plot profile show an example of immunofluorescence intensity along infected
cells. Scale bar: 20 lm.

G–I MDM were infected with VSV-G-pseudotyped HIV-1 GFP in the presence or absence of VLP-vpx, stained and recorded 48 h post-infection. On average, 104 cells in
each experiment were recorded and analysed for infection (G), MCM2 expression (H) and co-localisation between infection and MCM2 protein (I) using Hermes
WiScan cell-imaging system and ImageJ (n = 3, mean � s.e.m.; (ns) non-significant; **P-value ≤ 0.01, ***P-value ≤ 0.001, unpaired t-test).

J Log odds ratios calculated from quantifications of stimulated MDM show association of infection with MCM2/EdU (1, high association; 0, no association) (n ≥ 3,
mean � s.e.m.). Immunoblot shows expressions levels of SAMHD1 in these experiments. EdU was added to cells at the time of infection.
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siRNA (Fig 5E and F) or by VLP-vpx (Fig EV6C–F) completely

rescued HIV-1 infection from the inhibitory effect of HDACi. These

data indicate that HDACi possess antiretroviral activity that is

SAMHD1-dependent in macrophages.

Discussion

HIV infects terminally differentiated tissue macrophages within the

gut, lung, lymph nodes and central nervous system (CNS)

(Gonzalez-Scarano & Martin-Garcia, 2005; Yukl et al, 2014; Cribbs

et al, 2015). Macrophages represent the dominant cellular target in

the CNS, and compartmentalised viral populations have been docu-

mented in CSF, consistent with T-cell-independent replication in this

“sanctuary site” (Schnell et al, 2011). As HIV-infected macrophages

are able to release virus over extended periods, they are not only a

potential source of drug-resistant virus, but also a likely barrier to

achieving remission/cure (Watters et al, 2013).

Here, we propose that SAMHD1 is the dominant host factor

controlling post-entry permissivity to infection of non-dividing MDM.

We demonstrate that the SAMHD1 phosphorylation status at T592

controlling antiviral activity is naturally dynamic in primary human

MDM, providing a window of opportunity for HIV-1 infection without

a requirement for an anti-SAMHD1 countermeasure. Intriguingly, the

dynamic phosphorylation of SAMHD1 by CDK1 is associated with

expression of proteins typically associated with cell cycle control.

These include cyclins D1 and D3, cyclins A and E, E2F6, MCM2 and

Geminin. Therefore, despite the fact that that the vast majority MDM

in our experiments do not actually synthesise DNA (lack of EdU

incorporation) or divide (by PI and CFSE assays), we find that MDM

can be stimulated to exit G0 phase and enter a G1-like state. This

transition with associated CDK1 upregulation and T592 phosphoryla-

tion of SAMHD1 renders macrophages permissive to HIV-1.

It is not clear why macrophages should transition between a clas-

sical G0 state and a G1-like state. One possibility is that nucleotide

accumulation is required for repair of damaged DNA, as has been

observed in terminally differentiated post-mitotic neurons (Kruman

et al, 2004).

Our finding that microglia and peritoneal macrophages reside in

the G1-like state may explain how macrophages can sustain HIV-1

A B C

E F

D

G H I J K

Figure 4. HIV-1 tropism for murine tissue-resident macrophages at the cellular level.

A–D Peritoneal macrophages from 6- to 10-week-old C57BL/6 mice were stained for the macrophage markers (A) F4/80, (B) CD11b, (C) MCM2 or (D) active DNA
synthesis (EdU) 2 h after isolation. Scale bars: 20 lm.

E–K Peritoneal macrophages were isolated from 6- to 10-week-old WT or SAMHD1�/� (KO) mice. Cells were infected with VSV-G-pseudotyped HIV-1 GFP for 48 h and
analysed for (G) infection, (H) MCM2 expression, (I) EdU incorporation (EdU was added at the time of infection), and co-localisation between infection and (J)
MCM2 protein or (K) active DNA synthesis (by EdU incorporation). (E, F) Random microscopic fields and plot profiles show an example of immunofluorescence
intensity along infected cells. Scale bars: 10 lm. On average, 104 cells in each experiment were recorded and analysed using Hermes WiScan cell-imaging system
and ImageJ (n ≥ 2, mean � s.e.m.; (ns) non-significant; **P-value ≤ 0.01, unpaired t-test).
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infection in the absence of T cells within a humanised mouse model

(Honeycutt et al, 2016). Importantly, we could recapitulate the G1-

like HIV-1 permissivity window in freshly isolated peritoneal macro-

phages from mice. This demonstrates that the dynamic SAMHD1

regulation is conserved in mice and that in vivo macrophages are

likely to experience the transitions we describe. We found that cells

taken directly from mouse brain, in contrast to peritoneum,

frequently reverted from G1-like phase to the quiescent state. This

suggests either that microglia are intrinsically programmed to more

readily revert back to a quiescent state than peritoneal macrophages

or that maintenance of the G1-like state in microglia requires speci-

fic local tissue factors.

The brain is sometimes referred to as a “sanctuary” site where

isolated primate lentiviral replication occurs in myeloid cells, includ-

ing perivascular macrophages and microglia (Williams et al, 2001;

Schnell et al, 2009, 2010; Micci et al, 2014). Our biological insights

into dynamic changes essential for HIV-1 infection in macrophages

may be particularly relevant for HIV neuropathology given observa-

tions that symptomatic patients on long-term fully suppressive

combination antiretroviral therapy (ART) can have isolated viral

replication in the CNS (Schnell et al, 2009, 2010; Canestri et al,

2010; Hammond et al, 2016). We speculate that the brain micro-

environment could modulate G0- to G1-like transitions in brain

myeloid cells and thereby impact HIV replication in the CNS and

HIV persistence in this compartment.

In the light of the above, induction of a state of cellular resistance

to HIV infection by host-directed therapy in addition to ART is

highly desirable as we search to achieve sustained HIV remission.

This may be particularly important if combination ART cannot

prevent ongoing low-level replication and evolution (Lorenzo-

Redondo et al, 2016). Here, we reveal a hitherto unrecognised

SAMHD1-dependent antiretroviral activity of HDACi in macro-

phages. In addition to their known effects on gene transcription

(West & Johnstone, 2014) and HIV reactivation from latency

through histone modification, HDACi activate SAMHD1 antiviral

activity via p53-induced cell cycle exit, CDK1 depletion and loss of

SAMHD1 phosphorylation. The ability to reactivate latent virus and

to prevent infection of new target cells is a major advantage of these

A D

F

E

B

C

Figure 5. HDAC inhibitors induce a SAMHD1-dependent block to HIV-1 infection in macrophages.

A MDM were treated with increasing concentrations of the HDAC inhibitor SAHA 18 h before infection with VSV-G-pseudotyped HIV-1 GFP. The percentage of
infected cells was measured using FACS 48 h post-infection. Graph is representative example of n ≥ 3, mean � s.e.m.

B Stimulated MDM were treated with 1 lM SAHA and 48 h later stained for viability using a cell viability assay (LIVE/DEAD) (n ≥ 2, mean � s.e.m.; (ns) non-
significant, unpaired t-test). H2O2 was used as a positive control to induce cell death.

C Stimulated MDM were treated with 1 lM SAHA, and MDM were recorded and analysed for MCM2 protein expression using Hermes WiScan (n = 3, mean � s.e.m.;
**P-value ≤ 0.01, unpaired t-test).

D Stimulated MDM were treated with 1 lM SAHA, MDM were lysed, and immunoblotting was performed to detect cell cycle-associated proteins.
E, F MDM were transfected with control or pool of SAMHD1 siRNAs and infected 3 days later with VSV-G-pseudotyped HIV-1 GFP. Cells from a representative donor

were (E) lysed and used for immunoblotting or (F) inspected for infection. Scale bars: 20 lm. On average, 104 cells in each experiment were recorded and analysed
using Hermes WiScan cell-imaging system and ImageJ (n ≥ 2, mean � s.e.m.).

Source data are available online for this figure.
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agents as they enter clinical trials as candidates for achieving func-

tional HIV cure.

We mapped activation of the Raf/MEK/ERK signalling cascade

after addition of FCS. However, we have not identified the factor(s)

leading to transition to the G1-like phase and differential effects of

FCS and HS on SAMHD1 activity in MDM. FCS and HS differ in a

number of ways, including concentration of growth factors,

hormones and endotoxin. Charcoal stripping but not boiling of FCS

abrogated the enhanced permissivity arising from FCS culture,

consistent with a hormone or fatty acid being the putative active

agent. Furthermore, it is currently unclear whether the differential

effect on SAMHD1 is due to differences between foetal and adult

sera or differences between human and bovine sera. Indeed, we

could not reproduce the effect of FCS using human cord blood-

derived serum (data not shown).

Recently, Badia et al reported that MDM cultured in the presence

of GM-CSF induced the expression of cyclin D2 with downstream

changes in SAMHD1 phosphorylation and increased susceptibility to

HIV-1 infection (Badia et al, 2016). In particular, they were unable

to detect cyclin D2 expression by Western blot in either HS or FCS

cultured M-CSF stimulated macrophages, despite differences in

susceptibility to HIV-1 and SAMHD1 phosphorylation. Concor-

dantly, we report undetectable cyclin D2 under both culture condi-

tions, consistent with a cyclin D2-independent mechanism activated

by FCS that is driven by the Raf/MEK/ERK signalling pathway and

CDK1 regulation.

In summary, we have answered the question of how HIV-1

infects SAMHD1 expressing macrophages without encoding a Vpx-

like SAMHD1 antagonist. We have found that MDM and tissue-

resident macrophages exist in their typical terminally differentiated/

quiescent/G0 state, but also in a G1-like state. Those in G0 can be

stimulated into re-entering the G1-phase of the cell cycle, without

evidence for cell division, accompanied by deactivation of SAMHD1

by phosphorylation. This allows efficient HIV-1 replication without

the need to degrade SAMHD1. SAMHD1 shutdown provides a

window of opportunity for HIV-1 infection, and we believe that this

is how HIV-1 can infect macrophages in vivo. The translational

potential of this new knowledge is exemplified by our demon-

stration that HDAC inhibitors can block HIV infection at the pre-

integration stage through activation of SAMHD1, thereby protecting

these critical immune cells.

Materials and Methods

Reagents, inhibitors, antibodies, plasmids

Tissue culture media and supplements were obtained from Invitro-

gen (Paisley, UK), and tissue culture plastic was purchased from

TPP (Trasadingen, Switzerland). FCS (FBS) was purchased from

Biosera (Boussens, France) and Sigma (Sigma, St. Louis, MO, USA).

Charcoal-stripped FCS was purchased from Sigma. Human serum

from human male AB plasma was of USA origin and sterile-filtered

(Sigma). All chemicals were purchased from Sigma unless indicated

otherwise. Kinase inhibitors used: CDK4/6 inhibitor (PD 0332991,

Palbociclib) from Sigma; MEK/ERK inhibitor U0126 from Calbio-

chem (San Diego, USA); JAK 1–3 (ruxolitinib), PIM 1–3 (AZD1897),

GSK3 (CT99021), and MEK1/2 (AS-703026), RAF (TAK-632),

B-RAF (PXL4032) from Selleckchem (Houston, TX, USA), SAHA

(vorinostat) from Sigma and panobinostat from Cayman Chemicals

(Ann Arbor, MI, USA). Antibodies used were as follows: anti-cdc2

(Cell Signaling Technology, Beverly, MA, USA); anti-CDK2 (H-298,

Santa Cruz Biotechnology); anti-pCDK2(Thr160) (Bioss Inc., MA,

USA); anti-CDK4 (DCS156, Cell Signaling Technology); anti-CDK6

(B-10, Santa Cruz Biotechnology); anti-SAMHD1 (ab67820, Abcam,

UK), beta-actin (ab6276, abcam, UK); mouse anti-MCM2 (BM-28,

BD Biosciences, UK); and rabbit anti-MCM2 (SP85) from Sigma;

pSAMHD1 (a kind gift from M. Benkirane) and ProSci (Poway, CA,

USA); anti-Geminin (NCL-L-Geminin, Leica); anti-mouse F4/80 and

CD11b (kind gift from S. Yona, UCL); anti-human CD68, CD14,

CD163, CD80, CD86, CD40 (kind gift from M. Noursadeghi).

All infectious molecular clones were obtained from the NIH

AIDS Research and Reference Reagent Program (Germantown, MD,

USA).

Cell lines and viruses

TZM-bl HeLa and 293T cells were cultured in DMEM complete

(DMEM supplemented with 100 U/ml penicillin, 0.1 mg/ml strepto-

mycin and 10% FCS). HIV-1 full-length virus stocks were generated

by DNA plasmid transfection of 293T using Fugene HD (Promega

UK Ltd, UK) according to the manufacture’s protocol. Viral super-

natants were harvest 48 h post-transfection and filtered through

0.45-lm pore-size filters and stored at �80°C. Clarified viral super-

natants were analysed by p24 ELISA (AIDS and Cancer Virus

Program NCI-Frederick, MD, USA) for HIV-1 p24 antigen quan-

tification. SIVmac virus-like particles containing Vpx were prepared

as previously described (Goujon et al, 2008). VSV-G HIV-1 GFP

virus was produced by transfection of 293T with GFP-encoding

genome CSGW, packaging plasmid p8.91 and pMDG as previously

described (Besnier et al, 2002). SFV was kind gift from M. Mazzon

(UCL). VSV-G HIV-2 GFP virus was produced as previously

described (Ylinen et al, 2005), and VSV-G SIVsmE543 GFP virus

was kind gift from G. Towers (UCL).

Monocyte isolation and differentiation

PBMC were prepared from HIV-seronegative donors (after informed

consent was obtained), by density-gradient centrifugation (Lympho-

prep, Axis-Shield, UK). MDM were prepared by adherence with

washing of non-adherent cells after 2 h, with subsequent mainte-

nance of adherent cells in RPMI 1640 medium supplemented with

10% human serum or 10% foetal calf serum and MCSF (10 ng/ml)

for 3 days and then differentiated for a further 4 days in RPMI 1640

medium supplemented with 10% human/foetal calf sera without M-

CSF. Human AB serum (Sigma) was used to prepare unstimulated

cells or FCS (Biosera or Sigma) to prepare stimulated cells.

Infection of primary cells using full-length and VSV-G-
pseudotyped HIV-1 viruses

MDM were infected with 50 ng of p24 of each virus for 4 h. Cells

were washed in PBS, and new complete medium was added. MDM

were fixed in ice-cold acetone–methanol (1:1 [vol/vol]) 2 days post-

infection, and infected cells identified by staining for p24 protein

using a 1:1 mixture of the anti-p24 monoclonal antibodies EVA365
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and EVA366 (NIBSC, Center for AIDS Reagents, UK) and a

secondary goat anti-mouse beta-galactosidase-conjugated antibody

(SouthernBiotech, AL, USA) and visualised by X-Gal (5-bromo-4-

chloro-3-indolyl-b-d-galactopyranoside) staining (Promega). Virus-

infected cells were detected by light microscopy. Alternatively,

MDM were fixed in 3% PFA, permeabilised by saponin and stained

for intracellular p24 using anti-p24 FITC-conjugated antibody (Santa

Cruz Biotechnology, USA). The percentage of infected cells was

monitored by flow cytometry using BD FACSCalibur (BD Bio-

sciences, UK) and analysed by CellQuest (BD Biosciences) and

FlowJo software (Tree Star, OR, USA). GFP containing VSV-G-

pseudotyped HIV-1 was added to cells (MDM and tissue-resident

macrophages from mice), and after 4-h incubation, removed and

cells were washed in culture medium. The percentage of infected

cells was determined 48 h post-infection by flow cytometry using

BD FACSCalibur (BD Biosciences, UK) and analysed by CellQuest

(BD Biosciences) and FlowJo software (Tree Star, OR, USA) or by

Hermes WiScan-automated cell-imaging system (IDEA Bio-Medical

Ltd. Rehovot, Israel) and analysed using MetaMorph and ImageJ

software.

Quantitative PCR for total HIV DNA quantitation

Total HIV DNA was detected as previously described (Mlcochova

et al, 2014).

Measurement of HIV-1 entry (BlaM-Vpr assay)

HIV-1 entry was measured as previously described (Mlcochova

et al, 2014).

TZM-bl assay

Supernatants from BaL-infected MDM were harvested, filtered using

0.45-lm pore-sized filters and used to infect TZM-bl cells. Luciferase

activity of the TZM-bl cells was measured 24 h post-infection using

the Steady Glo Firefly Luciferase assay (Promega) and GloMax96

Luminometer (Promega).

SDS–PAGE and immunoblots

Cells were lysed in reducing Laemmli SDS sample buffer containing

PhosSTOP (Phosphatase Inhibitor Cocktail Tablets, Roche, Switzer-

land) at 96°C for 10 min and the proteins separated on NuPAGE�

Novex� 4–12% Bis–Tris Gels. Subsequently, the proteins were

transferred onto PVDF membranes (Millipore, Billerica, MA, USA),

the membranes were quenched, and proteins detected using specific

antibodies. Labelled protein bands were detected using Amersham

ECL Prime Western Blotting Detection Reagent (GE Healthcare,

USA) and Amersham Hyperfilm or AlphaInnotech CCD camera.

Protein band intensities were recorded and quantified using

AlphaInnotech CCD camera and AlphaView software (Protein-

Simple, San Jose, CA, USA).

RNA microarrays

Total RNA was purified from cell lysates collected in RLT buffer

(Qiagen) using the RNeasy Mini kit (Qiagen). Samples were

processed for Agilent microarrays, and data were normalised as

previously described (Chain et al, 2010). Microarray data are

available in the ArrayExpress database under accession number

E-MTAB-2985 for stimulated MDM (differentiated in FCS) and

E-TABM-1206 for all other cell types presented in this study.

The macrophage-associated gene expression module was used as

previously described (Tomlinson et al, 2012), and genes encod-

ing nuclear proteins were derived from the Gene Ontology

consortium database (AmiGO v1.8, http://amigo1.geneontology.

org/cgi-bin/amigo/go.cgi), under accession number GO:0005634,

filtered for cellular compartment and for Homo sapiens, to give

6,164 unique genes with gene symbol annotations. Ingenuity

pathway analysis (Ingenuity� Systems, www.ingenuity.com) was

used to identify significantly enriched pathways among 170

genes with > twofold expression in stimulated and unstimulated

MDM.

Cell proliferation assay, propidium iodine and CFSE labelling

Cell proliferation was measured by tracking new DNA synthesis

using Click-iT� EdU Alexa Fluor� 488 Kit (Invitrogen). EdU was

added to culture medium at 5 lM for 2 h or 2–4 days depending on

experiment. Labelled cells were detected using the Hermes WiScan-

automated cell-imaging system (IDEA Bio-Medical Ltd. Rehovot,

Israel) and analysed using MetaMorph and ImageJ software. For

propidium iodine (PI) staining: cells were fixed in 70% ethanol,

treated with RNAse and stained with PI (0.1 mg/ml), monitored by

flow cytometry using BD FACSCalibur and analysed by CellQuest

and FlowJo software. 5 lM CFSE was added to MDM according to

CellTraceTM CFSE Cell Proliferation Kit manufacturer protocol (Ther-

moFisher, Waltham, MA, USA), and cells were left in culture to

show potential cell division for an additional 6 days. CFSE labelling

was conducted according to CellTraceTM CFSE Cell Proliferation Kit

manufacturer protocol. Cells were monitored by flow cytometry

using BD FACSCalibur and analysed by CellQuest and FlowJo

software.

Immunofluorescence

MDMs were fixed in 3% PFA, quenched with 50 mM NH4Cl

and permeabilised with 0.1% Triton X-100 in PBS or 90%

methanol. After blocking in PBS/1% FCS, MDMs were labelled

for 1 h with primary antibodies diluted in PBS/1% FCS, washed

and labelled again with Alexa Fluor secondary antibodies for

1 h. Cells were washed in PBS/1% FCS and stained with DAPI

in PBS for 20 min. Labelled cells were detected using Hermes

WiScan-automated cell-imaging system (IDEA Bio-Medical Ltd.

Rehovot, Israel) and analysed using MetaMorph and ImageJ

software.

SAMHD1 knock-down by siRNA

1 × 105 MDM differentiated in MCSF for 4 days were transfected

with 20 pmol of siRNA (L-013950-01, Dharmacon) using Lipofec-

tamine RNAiMAX Transfection Reagent (Invitrogen). Transfection

medium was replaced after 18 h with RPMI 1640 medium supple-

mented with 10% human AB serum or 10% FCS and cells cultured

for additional 3 days before infection.
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Tissue-resident brain macrophages

All work conformed to United Kingdom Home Office legislation (Sci-

entific Procedures Act 1986) (https://www.gov.uk/government/pub

lications/consolidated-version-of-aspa-1986). Adult CD1 mice aged

8–12 weeks were anaesthetised using 20% Pentoject� and perfused

with ice-cold PBS. Microglia were isolated as previously described

(Denk et al, 2016). Briefly, brains were dissected and homogenised

using dounce tissue homogeniser in 0.2% BSA supplemented

Hank’s balanced salt solution (HBSS). Microglia were isolated using

a Percoll density gradient (37% versus 70%). Cells were subse-

quently counted using haemocytometer and plated in 96-well plates

at 2.5 × 104–5 × 104 cells/well. Cells were maintained in DMEM/

F12 with 10% FCS at 37°C, 5% CO2 until further use.

Tissue-resident peritoneal macrophages

Six- to ten-week-old C57BL/6 wild-type and knock-out mice were

used in accordance with the UK Home Office Scientific Procedures

Act 1986. Peritoneal cavities were washed with PBS supplemented

with 3 mM EDTA. Following gentle massage, the cavity was opened

by abdominal incision and lavage fluid collected. Fluid was

centrifuged 500 g for 5 min, and cells were re-suspended in

DMEM + 10% FCS and cultured for 2 h before staining or infection.

dNTP measurement

The dNTP levels in the relevant cell types were measured by the

HIV-1 RT-based dNTP assay as previously described (Diamond

et al, 2004).

Ethics statement

Adult subjects provided written informed consent. Primary Macro-

phage & Dendritic Cell Cultures from Healthy Volunteer Blood

Donors has been reviewed and granted ethical permission by the

National Research Ethics Service through The Joint UCL/UCLH

Committees on the Ethics of Human Research (Committee Alpha) 2

December 2009; reference number 06/Q0502/92.

Expanded View for this article is available online.

Acknowledgements
This work was funded by a Wellcome Trust fellowship to RKG (WT108082AIA)

and the National Institute for Health Research University College London

Hospitals Biomedical Research Centre. GJT is funded by Wellcome Trust Senior

Biomedical Research Fellowship 108183, the European Research Council under

the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC

grant agreement number 339223 and the Medical Research Council. This work

was also partially supported by USA National Institutes of Health grants,

AI049781 (B.K.) and GM104198 (B.K.). We would also like to thank Mark Wain-

berg, Richard Goldstein, Anne Bridgeman, Jennifer Roe, Laura Hilditch, Deenan

Pillay, Arne Akbar, Rob Sellar, Daniel Hochhauser and Clare Jolly for helpful

advice and reagents.

Author contributions
PM, RKG, SY, GJT, MN, AC, AK, MCG, BK, SJN, AC, RAMB, JR designed experi-

ments; RKG, PM, MN, GJT wrote the manuscript; PM, SAW, MCG, SY, GML, CG,

KAS, CB performed experiments; and PM, RKG, SY, GJT, MN, AC, AK, MCG, BK,

SJN, AC, CB, KAS, JR, RAMB analysed data.

Conflict of interest
The authors declare that they have no conflict of interest.

References

Arnold LH, Groom HC, Kunzelmann S, Schwefel D, Caswell SJ, Ordonez P,

Mann MC, Rueschenbaum S, Goldstone DC, Pennell S, Howell SA, Stoye JP,

Webb M, Taylor IA, Bishop KN (2015) Phospho-dependent regulation of

SAMHD1 oligomerisation couples catalysis and restriction. PLoS Pathog 11:

e1005194

Badia R, Pujantell M, Riveira-Munoz E, Puig T, Torres-Torronteras J, Marti R,

Clotet B, Ampudia RM, Vives-Pi M, Este JA, Ballana E (2016) The G1/S

specific cyclin D2 is a regulator of HIV-1 restriction in non-proliferating

cells. PLoS Pathog 12: e1005829

Baldin V, Lukas J, Marcote MJ, Pagano M, Draetta G (1993) Cyclin D1 is a

nuclear protein required for cell cycle progression in G1. Genes Dev 7:

812 – 821

Behrendt R, Schumann T, Gerbaulet A, Nguyen LA, Schubert N, Alexopoulou

D, Berka U, Lienenklaus S, Peschke K, Gibbert K, Wittmann S, Lindemann

D, Weiss S, Dahl A, Naumann R, Dittmer U, Kim B, Mueller W, Gramberg T,

Roers A (2013) Mouse SAMHD1 has antiretroviral activity and suppresses a

spontaneous cell-intrinsic antiviral response. Cell Rep 4: 689 – 696

Bertoli C, Skotheim JM, de Bruin RA (2013) Control of cell cycle transcription

during G1 and S phases. Nat Rev Mol Cell Biol 14: 518 – 528

Besnier C, Takeuchi Y, Towers G (2002) Restriction of lentivirus in monkeys.

Proc Natl Acad Sci USA 99: 11920 – 11925

Canestri A, Lescure FX, Jaureguiberry S, Moulignier A, Amiel C, Marcelin AG,

Peytavin G, Tubiana R, Pialoux G, Katlama C (2010) Discordance between

cerebral spinal fluid and plasma HIV replication in patients with

neurological symptoms who are receiving suppressive antiretroviral

therapy. Clin Infect Dis 50: 773 – 778

Chain B, Bowen H, Hammond J, Posch W, Rasaiyaah J, Tsang J, Noursadeghi

M (2010) Error, reproducibility and sensitivity: a pipeline for data

processing of Agilent oligonucleotide expression arrays. BMC Bioinformatics

11: 344

Coverley D, Laman H, Laskey RA (2002) Distinct roles for cyclins E and A

during DNA replication complex assembly and activation. Nat Cell Biol 4:

523 – 528

Cribbs SK, Lennox J, Caliendo AM, Brown LA, Guidot DM (2015) Healthy

HIV-1-infected individuals on highly active antiretroviral therapy

harbor HIV-1 in their alveolar macrophages. AIDS Res Hum Retroviruses 31:

64 – 70

Cribier A, Descours B, Valadao AL, Laguette N, Benkirane M (2013)

Phosphorylation of SAMHD1 by cyclin A2/CDK1 regulates its restriction

activity toward HIV-1. Cell Rep 3: 1036 – 1043

Denk F, Crow M, Didangelos A, Lopes DM, McMahon SB (2016) Persistent

alterations in microglial enhancers in a model of chronic pain. Cell Rep 15:

1771 – 1781

Diamond TL, Roshal M, Jamburuthugoda VK, Reynolds HM, Merriam AR, Lee

KY, Balakrishnan M, Bambara RA, Planelles V, Dewhurst S, Kim B (2004)

Macrophage tropism of HIV-1 depends on efficient cellular dNTP

utilization by reverse transcriptase. J Biol Chem 279: 51545 – 51553

Fragkos M, Ganier O, Coulombe P, Mechali M (2015) DNA replication origin

activation in space and time. Nat Rev Mol Cell Biol 16: 360 – 374

The EMBO Journal Vol 36 | No 5 | 2017 ª 2017 The Authors

The EMBO Journal HIV targets G1-like macrophages Petra Mlcochova et al

614

Published online: January 25, 2017 

https://www.gov.uk/government/publications/consolidated-version-of-aspa-1986
https://www.gov.uk/government/publications/consolidated-version-of-aspa-1986
https://doi.org/10.15252/embj.201696025


Goldstone DC, Ennis-Adeniran V, Hedden JJ, Groom HC, Rice GI, Christodoulou

E, Walker PA, Kelly G, Haire LF, Yap MW, de Carvalho LP, Stoye JP, Crow YJ,

Taylor IA, Webb M (2011) HIV-1 restriction factor SAMHD1 is a

deoxynucleoside triphosphate triphosphohydrolase. Nature 480: 379 – 382

Gonzalez-Scarano F, Martin-Garcia J (2005) The neuropathogenesis of AIDS.

Nat Rev Immunol 5: 69 – 81

Goujon C, Arfi V, Pertel T, Luban J, Lienard J, Rigal D, Darlix JL, Cimarelli A

(2008) Characterization of simian immunodeficiency virus SIVSM/human

immunodeficiency virus type 2 Vpx function in human myeloid cells. J

Virol 82: 12335 – 12345

Hammond ER, Crum RM, Treisman GJ, Mehta SH, Clifford DB, Ellis RJ, Gelman

BB, Grant I, Letendre SL, Marra CM, Morgello S, Simpson DM, McArthur JC,

Group C (2016) Persistent CSF but not plasma HIV RNA is associated with

increased risk of new-onset moderate-to-severe depressive symptoms; a

prospective cohort study. J Neurovirol 22: 479 – 487

Honeycutt JB, Wahl A, Baker C, Spagnuolo RA, Foster J, Zakharova O,

Wietgrefe S, Caro-Vegas C, Madden V, Sharpe G, Haase AT, Eron JJ, Garcia

JV (2016) Macrophages sustain HIV replication in vivo independently of T

cells. J Clin Invest 126: 1353 – 1366

Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M, Srivastava

S, Florens L, Washburn MP, Skowronski J (2011) Vpx relieves inhibition of

HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature

474: 658 – 661

Kaushik R, Zhu X, Stranska R, Wu Y, Stevenson M (2009) A cellular restriction

dictates the permissivity of nondividing monocytes/macrophages to

lentivirus and gammaretrovirus infection. Cell Host Microbe 6: 68 – 80

Komatsu N, Kawamata N, Takeuchi S, Yin D, Chien W, Miller CW, Koeffler HP

(2006) SAHA, a HDAC inhibitor, has profound anti-growth activity against

non-small cell lung cancer cells. Oncol Rep 15: 187 – 191

Kruman II, Wersto RP, Cardozo-Pelaez F, Smilenov L, Chan SL, Chrest FJ,

Emokpae R Jr, Gorospe M, Mattson MP (2004) Cell cycle activation linked

to neuronal cell death initiated by DNA damage. Neuron 41: 549 – 561

Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Segeral E,

Yatim A, Emiliani S, Schwartz O, Benkirane M (2011) SAMHD1 is the

dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted

by Vpx. Nature 474: 654 – 657

Lahouassa H, Daddacha W, Hofmann H, Ayinde D, Logue EC, Dragin L, Bloch

N, Maudet C, Bertrand M, Gramberg T, Pancino G, Priet S, Canard B,

Laguette N, Benkirane M, Transy C, Landau NR, Kim B, Margottin-Goguet

F (2012) SAMHD1 restricts the replication of human immunodeficiency

virus type 1 by depleting the intracellular pool of deoxynucleoside

triphosphates. Nat Immunol 13: 223 – 228

Lorenzo-Redondo R, Fryer HR, Bedford T, Kim EY, Archer J, Kosakovsky Pond

SL, Chung YS, Penugonda S, Chipman JG, Fletcher CV, Schacker TW, Malim

MH, Rambaut A, Haase AT, McLean AR, Wolinsky SM (2016) Persistent

HIV-1 replication maintains the tissue reservoir during therapy. Nature

530: 51 – 56

Marks PA, Richon VM, Rifkind RA (2000) Histone deacetylase inhibitors:

inducers of differentiation or apoptosis of transformed cells. J Natl Cancer

Inst 92: 1210 – 1216

Masai H, Matsumoto S, You Z, Yoshizawa-Sugata N, Oda M (2010) Eukaryotic

chromosome DNA replication: where, when, and how? Annu Rev Biochem

79: 89 – 130

Micci L, Alvarez X, Iriele RI, Ortiz AM, Ryan ES, McGary CS, Deleage C, McAtee

BB, He T, Apetrei C, Easley K, Pahwa S, Collman RG, Derdeyn CA,

Davenport MP, Estes JD, Silvestri G, Lackner AA, Paiardini M (2014) CD4

depletion in SIV-infected macaques results in macrophage and microglia

infection with rapid turnover of infected cells. PLoS Pathog 10: e1004467

Mlcochova P, Watters SA, Towers GJ, Noursadeghi M, Gupta RK (2014) Vpx

complementation of ‘non-macrophage tropic’ R5 viruses reveals robust

entry of infectious HIV-1 cores into macrophages. Retrovirology 11: 25

Musahl C, Holthoff HP, Lesch R, Knippers R (1998) Stability of the replicative

Mcm3 protein in proliferating and differentiating human cells. Exp Cell Res

241: 260 – 264

Pauls E, Ruiz A, Badia R, Permanyer M, Gubern A, Riveira-Munoz E, Torres-

Torronteras J, Alvarez M, Mothe B, Brander C, Crespo M, Menendez-Arias

L, Clotet B, Keppler OT, Marti R, Posas F, Ballana E, Este JA (2014) Cell

cycle control and HIV-1 susceptibility are linked by CDK6-dependent CDK2

phosphorylation of SAMHD1 in myeloid and lymphoid cells. J Immunol 193:

1988 – 1997

Rehwinkel J, Maelfait J, Bridgeman A, Rigby R, Hayward B, Liberatore RA,

Bieniasz PD, Towers GJ, Moita LF, Crow YJ, Bonthron DT, Reis e Sousa C

(2013) SAMHD1-dependent retroviral control and escape in mice. EMBO J

32: 2454 – 2462

Schmidt S, Schenkova K, Adam T, Erikson E, Lehmann-Koch J, Sertel S,

Verhasselt B, Fackler OT, Lasitschka F, Keppler OT (2015) SAMHD1’s protein

expression profile in humans. J Leukoc Biol 98: 5 – 14

Schnell G, Spudich S, Harrington P, Price RW, Swanstrom R (2009)

Compartmentalized human immunodeficiency virus type 1 originates

from long-lived cells in some subjects with HIV-1-associated dementia.

PLoS Pathog 5: e1000395

Schnell G, Price RW, Swanstrom R, Spudich S (2010) Compartmentalization

and clonal amplification of HIV-1 variants in the cerebrospinal fluid

during primary infection. J Virol 84: 2395 – 2407

Schnell G, Joseph S, Spudich S, Price RW, Swanstrom R (2011) HIV-1

replication in the central nervous system occurs in two distinct cell types.

PLoS Pathog 7: e1002286

Sherr CJ (1993) Mammalian G1 cyclins. Cell 73: 1059 – 1065

Sherr CJ (1996) Cancer cell cycles. Science 274: 1672 – 1677

Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of

G1-phase progression. Genes Dev 13: 1501 – 1512

Stoeber K, Mills AD, Kubota Y, Krude T, Romanowski P, Marheineke K, Laskey

RA, Williams GH (1998) Cdc6 protein causes premature entry into S phase

in a mammalian cell-free system. EMBO J 17: 7219 – 7229

Stoeber K, Tlsty TD, Happerfield L, Thomas GA, Romanov S, Bobrow L,

Williams ED, Williams GH (2001) DNA replication licensing and human

cell proliferation. J Cell Sci 114: 2027 – 2041

Su TT, O’Farrell PH (1997) Chromosome association of minichromosome

maintenance proteins in Drosophila mitotic cycles. J Cell Biol 139: 13 – 21

Tomlinson GS, Booth H, Petit SJ, Potton E, Towers GJ, Miller RF, Chain BM,

Noursadeghi M (2012) Adherent human alveolar macrophages exhibit a

transient pro-inflammatory profile that confounds responses to innate

immune stimulation. PLoS One 7: e40348

Tsuruga H, Yabuta N, Hashizume K, Ikeda M, Endo Y, Nojima H (1997)

Expression, nuclear localization and interactions of human MCM/P1

proteins. Biochem Biophys Res Commun 236: 118 – 125

Wang X, Simpson ER, Brown KA (2015) p53: Protection against tumor

growth beyond effects on cell cycle and apoptosis. Cancer Res 75:

5001 – 5007

Watters SA, Mlcochova P, Gupta RK (2013) Macrophages: the neglected

barrier to eradication. Curr Opin Infect Dis 26: 561 – 566

Welbourn S, Dutta SM, Semmes OJ, Strebel K (2013) Restriction of virus

infection but not catalytic dNTPase activity is regulated by

phosphorylation of SAMHD1. J Virol 87: 11516 – 11524

West AC, Johnstone RW (2014) New and emerging HDAC inhibitors for cancer

treatment. J Clin Invest 124: 30 – 39

ª 2017 The Authors The EMBO Journal Vol 36 | No 5 | 2017

Petra Mlcochova et al HIV targets G1-like macrophages The EMBO Journal

615

Published online: January 25, 2017 



White TE, Brandariz-Nunez A, Valle-Casuso JC, Amie S, Nguyen LA, Kim B,

Tuzova M, Diaz-Griffero F (2013) The retroviral restriction ability of

SAMHD1, but not its deoxynucleotide triphosphohydrolase activity, is

regulated by phosphorylation. Cell Host Microbe 13: 441 – 451

Wightman F, Ellenberg P, Churchill M, Lewin SR (2012) HDAC inhibitors in

HIV. Immunol Cell Biol 90: 47 – 54

Williams GH, Romanowski P, Morris L, Madine M, Mills AD, Stoeber K, Marr J,

Laskey RA, Coleman N (1998) Improved cervical smear assessment using

antibodies against proteins that regulate DNA replication. Proc Natl Acad

Sci USA 95: 14932 – 14937

Williams KC, Corey S, Westmoreland SV, Pauley D, Knight H, deBakker C,

Alvarez X, Lackner AA (2001) Perivascular macrophages are the primary

cell type productively infected by simian immunodeficiency virus in the

brains of macaques: implications for the neuropathogenesis of AIDS. J Exp

Med 193: 905 – 915

Wittmann S, Behrendt R, Eissmann K, Volkmann B, Thomas D, Ebert T, Cribier

A, Benkirane M, Hornung V, Bouzas NF, Gramberg T (2015)

Phosphorylation of murine SAMHD1 regulates its antiretroviral activity.

Retrovirology 12: 103

Yan J, Hao C, DeLucia M, Swanson S, Florens L, Washburn MP, Ahn J,

Skowronski J (2015) Cyclin A2 - CDK regulates SAMHD1 phosphohydrolase

domain. J Biol Chem 290: 13279 – 13292

Ylinen L, Keckesova Z, Wilson SJ, Ranasinghe S, Towers GJ (2005) Differential

restriction of HIV-2 and SIVmac by TRIM5alpha alleles. J Virol 79:

11580 – 11587

Yukl SA, Sinclair E, Somsouk M, Hunt PW, Epling L, Killian M, Girling V, Li P,

Havlir DV, Deeks SG, Wong JK, Hatano H (2014) A comparison of methods

for measuring rectal HIV levels suggests that HIV DNA resides in cells

other than CD4+ T cells, including myeloid cells. AIDS 28: 439 – 442

Zhang R, Bloch N, Nguyen LA, Kim B, Landau NR (2014) SAMHD1 restricts

HIV-1 replication and regulates interferon production in mouse myeloid

cells. PLoS One 9: e89558

License: This is an open access article under the

terms of the Creative Commons Attribution 4.0

License, which permits use, distribution and reproduc-

tion in any medium, provided the original work is

properly cited.

The EMBO Journal Vol 36 | No 5 | 2017 ª 2017 The Authors

The EMBO Journal HIV targets G1-like macrophages Petra Mlcochova et al

616

Published online: January 25, 2017 


