1,588 research outputs found

    A 4% Geometric Distance to the Galaxy NGC4258 from Orbital Motions in a Nuclear Gas Disk

    Get PDF
    The water maser in the mildly active nucleus in the nearby galaxy NGC4258 traces a thin, nearly edge-on, subparsec-scale Keplerian disk. Using the technique of very long baseline interferometry, we have detected the proper motions of these masers as they sweep in front of the central black hole at an orbital velocity of about 1100 km/s. The average maser proper motion of 31.5 microarcseconds per year is used in conjunction with the observed acceleration of the masers to derive a purely geometric distance to the galaxy of 7.2 +- 0.3 Mpc. This is the most precise extragalactic distance measured to date, and, being independent of all other distance indicators, is likely to play an important role in calibrating the extragalactic distance scale.Comment: 11 pages, 3 figures. Accepted for publication in Natur

    Perilipin regulates the thermogenic actions of norepinephrine in brown adipose tissue

    Get PDF
    In response to cold, norepinephrine (NE)-induced triacylglycerol hydrolysis (lipolysis) in adipocytes of brown adipose tissue (BAT) provides fatty acid substrates to mitochondria for heat generation (adaptive thermogenesis). NE-induced lipolysis is mediated by protein kinase A (PKA)-dependent phosphorylation of perilipin, a lipid droplet-associated protein that is the major regulator of lipolysis. We investigated the role of perilipin PKA phosphorylation in BAT NE-stimulated thermogenesis using a novel mouse model in which a mutant form of perilipin, lacking all six PKA phosphorylation sites, is expressed in adipocytes of perilipin knockout (Peri KO) mice. Here, we show that despite a normal mitochondrial respiratory capacity, NE-induced lipolysis is abrogated in the interscapular brown adipose tissue (IBAT) of these mice. This lipolytic constraint is accompanied by a dramatic blunting (∼70%) of the in vivo thermal response to NE. Thus, in the presence of perilipin, PKA-mediated perilipin phosphorylation is essential for NE-dependent lipolysis and full adaptive thermogenesis in BAT. In IBAT of Peri KO mice, increased basal lipolysis attributable to the absence of perilipin is sufficient to support a rapid NE-stimulated temperature increase (∼3.0°C) comparable to that in wild-type mice. This observation suggests that one or more NE-dependent mechanism downstream of perilipin phosphorylation is required to initiate and/or sustain the IBAT thermal response

    Water vapour at high redshift: Arecibo monitoring of the megamaser in MG J0414+0534

    Get PDF
    The study of water masers at cosmological distances would allow us to investigate the parsec-scale environment around powerful radio sources, to probe the physical conditions of the molecular gas in the inner parsecs of quasars, and to estimate their nuclear engine masses in the early universe. To derive this information, the nature of the maser source, jet or disk-maser, needs to be assessed through a detailed investigation of the observational characteristics of the line emission. We monitored the maser line in the lensed quasar MGJ0414+0534 at z = 2.64 with the 300-m Arecibo telescope for ~15 months to detect possible additional maser components and to measure a potential velocity drift of the lines. In addition, we follow the maser and continuum emissions to reveal significant variations in their flux density and to determine correlation or time-lag, if any, between them. The main maser line profile is complex and can be resolved into a number of broad features with line widths of 30-160 km/s. A new maser component was tentatively detected in October 2008 that is redshifted by 470 km/s w.r.t the systemic velocity of the quasar. The line width of the main maser feature increased by a factor of two between the Effelsberg and EVLA observations reported by Impellizzeri et al. (2008) and the first epoch of the Arecibo monitoring campaign. After correcting for the lens magnification, we find that the total H2O isotropic luminosity of the maser in MGJ0414+0534 is now ~30,000 Lsun, making this source the most luminous ever discovered.[Abridged]Comment: 8 pages, 6 figures, accepted for publication in A&

    Isoform-specific potentiation of stem and progenitor cell engraftment by AML1/RUNX1

    Get PDF
    Background: AML1/RUNX1 is the most frequently mutated gene in leukaemia and is central to the normal biology of hematopoietic stem and progenitor cells. However, the role of different AML1 isoforms within these primitive compartments is unclear. Here we investigate whether altering relative expression of AML1 isoforms impacts the balance between cell self-renewal and differentiation in vitro and in vivo. Methods and Findings: The human AML1a isoform encodes a truncated molecule with DNA-binding but no transactivation capacity. We used a retrovirus-based approach to transduce AML1a into primitive haematopoietic cells isolated from the mouse. We observed that enforced AML1a expression increased the competitive engraftment potential of murine long-term reconstituting stem cells with the proportion of AML1a-expressing cells increasing over time in both primary and secondary recipients. Furthermore, AML1a expression dramatically increased primitive and committed progenitor activity in engrafted animals as assessed by long-term culture, cobblestone formation, and colony assays. In contrast, expression of the full-length isoform AML1b abrogated engraftment potential. In vitro, AML1b promoted differentiation while AML1a promoted proliferation of progenitors capable of short-term lymphomyeloid engraftment. Consistent with these findings, the relative abundance of AML1a was highest in the primitive stem/progenitor compartment of human cord blood, and forced expression of AML1a in these cells enhanced maintenance of primitive potential both in vitro and in vivo. Conclusions: These data demonstrate that the "a" isoform of AML1 has the capacity to potentiate stem and progenitor cell engraftment, both of which are required for successful clinical transplantation. This activity is consistent with its expression pattern in both normal and leukaemic cells. Manipulating the balance of AML1 isoform expression may offer novel therapeutic strategies, exploitable in the contexts of leukaemia and also in cord blood transplantation in adults, in whom stem and progenitor cell numbers are often limiting. © 2007 Tsuzuki et al

    Self-gravitating warped discs around supermassive black holes

    Full text link
    We consider warped equilibrium configurations for stellar and gaseous disks in the Keplerian force-field of a supermassive black hole, assuming that the self-gravity of the disk provides the only acting torques. Modeling the disk as a collection of concentric circular rings, and computing the torques in the non-linear regime, we show that stable, strongly warped precessing equilibria are possible. These solutions exist for a wide range of disk-to-black hole mass ratios Md/MbhM_d/M_{bh}, can span large warp angles of up to ±120deg\pm\sim 120\deg, have inner and outer boundaries, and extend over a radial range of a factor of typically two to four. These equilibrium configurations obey a scaling relation such that in good approximation \phidot/\Omega\propto M_d/M_{bh} where \phidot is the (retrograde) precession frequency and Ω\Omega is a characteristic orbital frequency in the disk. Stability was determined using linear perturbation theory and, in a few cases, confirmed by numerical integration of the equations of motion. Most of the precessing equilibria are found to be stable, but some are unstable. The main result of this study is that highly warped disks near black holes can persist for long times without any persistent forcing other than by their self-gravity. The possible relevance of this to galactic nuclei is briefly discussed.Comment: 13 pages, 21 figures, published in MNRA

    The spin polarization of CrO2 revisited

    Get PDF
    Here, we use Andreev reflection spectroscopy to study the spin polarization of high quality CrO2 films. We study the spin polarization as a function of growth temperature, resulting in grain size and electrical resistivity. In these films low temperature growth appears to be a necessary but not sufficient condition to guarantee the observation of high spin polarization, and this is only observed in conjunction with suppressed superconducting gap values and anomalously low interface properties. We suggest that this combination of observations is a manifestation of the long range spin triplet proximity effect. (C) 2007 American Institute of Physics

    Photo-production of neutral kaons on 12C in the threshold region

    Get PDF
    Kaon photo-production process on 12^{12}C has been studied by measuring neutral kaons in a photon energy range of 0.8-1.1 GeV. Neutral kaons were identified by the invariant mass constructed from two charged pions emitted in the KS0π+πK^{0}_{S}\to\pi^{+}\pi^{-} decay channel. The differential cross sections as well as the integrated ones in the threshold photon energy region were obtained. The obtained momentum spectra were compared with a Spectator model calculation using elementary amplitudes of kaon photo-production given by recent isobar models. Present result provides, for the first time, the information on n(γ,K0)Λn(\gamma,K^{0})\Lambda reaction which is expected to play an important role to construct models for strangeness production by the electromagnetic interaction. Experimental results show that cross section of 12C(γ,K0)^{12}{\rm C}(\gamma,K^0) is of the same order to that of 12C(γ,K+)^{12}{\rm C}(\gamma,K^+) and suggest that slightly backward K0K^0 angular distribution is favored in the γnK0Λ\gamma n\to K^0\Lambda process.Comment: 6 pages, 8 figure

    Gamma-Ray Spectroscopy of Λ16^{16}_\LambdaO and Λ15^{15}_\LambdaN Hypernuclei via the 16^{16}O(K,π)(K^-, \pi^-) reaction

    Full text link
    he bound-state level structures of the Λ16^{16}_{\Lambda}O and Λ15^{15}_{\Lambda}N hypernuclei were studied by γ\gamma-ray spectroscopy using a germanium detector array (Hyperball) via the 16^{16}O (K,πγK^-, \pi^- \gamma) reaction. A level scheme for Λ16^{16}_{\Lambda}O was determined from the observation of three γ\gamma-ray transitions from the doublet of states (22^-,11^-) at 6.7\sim 6.7 MeV to the ground-state doublet (11^-,00^-). The Λ15^{15}_{\Lambda}N hypernuclei were produced via proton emission from unbound states in Λ16^{16}_{\Lambda}O . Three γ\gamma -rays were observed and the lifetime of the 1/2+;11/2^+;1 state in Λ15^{15}_{\Lambda}N was measured by the Doppler shift attenuation method. By comparing the experimental results with shell-model calculations, the spin-dependence of the ΛN\Lambda N interaction is discussed. In particular, the measured Λ16^{16}_{\Lambda}O ground-state doublet spacing of 26.4 ±\pm 1.6 ±\pm 0.5 keV determines a small but nonzero strength of the ΛN\Lambda N tensor interaction.Comment: 22 pages, 17 figure

    Superconducting gap structure and pinning in disordered MgB2 films

    Full text link
    We have performed a comparative study of two thin films of magnesium diboride (MgB2) grown by different techniques. The critical current density at different temperatures and magnetic fields was evaluated from magnetisation curves, the structure of superconducting order parameter was obtained from point-contact spectroscopy, and the scattering rates were evaluated by fitting the temperature dependent normal-state resistivity to the two-band model. The films have similar critical temperatures close to 39 K, but the upper critical fields were different by a factor of 2 (5.2T and 2.5 T at 20 K). We have found that the film with higher Hc2 also had stronger scattering in the sigma band and smaller value of the superconducting gap in this band. As the scattering in sigma band is primarily due to the defects in boron plane, our results are consistent with the assumption that disordering the boron planes leads to enhanced Hc2 and better pinning properties in magnetic field.Comment: Paper presented at EUCAS'0
    corecore