313 research outputs found

    Peripheral Electrical and Magnetic Stimulation to Augment Resistance Training

    Get PDF
    Electrical stimulation (ES) and magnetic stimulation (MS), applied peripherally, may be used to elicit muscle contractions to increase muscle hypertrophy, increase muscle strength and reduce knee laxity in rehabilitation following injury. We aimed to examine the effect of a three-week exercise programme designed to induce muscle hypertrophy augmented by peripheral ES and MS. We hypothesised that the use of peripheral stimulation to augment voluntary drive during a resistance-training protocol would induce more repetitions thus leading to increased thigh circumference, muscle layer thickness, and quadriceps strength whilst decreasing knee laxity. Thirty healthy participants were divided randomly into either ES, MS or Control groups. Five resistance training sessions were carried out, consisting of four sets of quadriceps extensions. During the first three sets the participants performed eight repetitions at 85% of their 1-repetition maximum (1-RM). On the last set, the participants were instructed to perform the exercise until failure. The augmentation of peripheral stimuli allowed the MS and ES groups to continue to exercise producing, on average, 4 ± 2 and 7 ± 6 additional repetitions with ES and MS, respectively. Following the training, significant increases were observed for both 1-RM (p = 0.005) and muscle layer thickness (p = 0.031) whilst no change was observed in thigh circumference (p = 0.365). Knee laxity decreased (p = 0.005). However, there were no significant differences in the stimulation groups compared with control for any of these measurements. The additional repetitions elicited by stimulation after the point of failure suggests that peripheral electrical and/or magnetic stimulation may be useful as an adjunct for resistance training. However, this effect of resistance training augmented by peripheral stimulation on hypertrophy, strength and knee laxity may be small

    Are computed tomography-based measures of specific abdominal muscle groups predictive of adverse outcomes in older cancer patients?

    Get PDF
    Purpose: It is unknown whether computed tomography (CT)-based total abdominal muscle measures are representative of specific abdominal muscle groups and whether analysis of specific abdominal muscle groups are predictive of the risk of adverse outcomes in older cancer patients. Methods: Retrospective single-center cohort study in elective colon cancer patients aged ≥65 years. CT-based skeletal muscle (SM) surface area, muscle density and intermuscular adipose tissue (IMAT) surface area were determined for rectus abdominis; external- and internal oblique and transversus abdominis (lateral muscles); psoas; and erector spinae and quadratus lumborum (back muscles). Outcomes were defined as severe postoperative complications (Clavien-Dindo score >2) and long-term survival (median follow-up 5.2 years). Results: 254 older colon cancer patients were included (median 73.6 years, 62.2% males). Rectus abdominis showed the lowest SM surface area and muscle density and the back muscles showed the highest IMAT surface area. Psoas muscle density, and lateral muscle density and percentage IMAT were associated with severe postoperative complications independent of gender, age and cancer stage. Conclusions: CT-based total abdominal muscle quantity and quality do not represent the heterogeneity that exists between specific muscle groups. The potential added value of analysis of specific muscle groups in predicting adverse outcomes in older (colon) cancer patients should be further addressed in prospective studies

    Body Composition of Infants With Biliary Atresia:Anthropometric Measurements and Computed Tomography-based Body Metrics

    Get PDF
    Objectives: Biliary atresia (BA) causes neonatal cholestasis that requires hepatoportoenterostomy or liver transplantation (LT) for long-term survival. Nutritional optimization is necessary as sarcopenia and sarcopenic obesity have been associated with adverse clinical outcome. Currently, mid upper arm circumference (MUAC) is considered the most accurate indicator. The aim of the study was to determine computed tomography (CT)-based body metrics in infants with BA and to evaluate its correlation with MUAC. Methods: We retrospectively analyzed all BA infants below 2 years of age who underwent CT as part of LT screening at our hospital between 2006 and 2019. Measured variables were indexed with length and included: MUAC, total psoas muscle surface area (tPMSA), cross-sectional skeletal muscle area (CSMA), and total abdominal fat area. Intraclass correlation coefficients and Pearson coefficients were calculated. CSMA-to-abdominal fat area ratio was divided in quartiles, the lowest quartile group was considered sarcopenic obese. Results: Eighty infants with a median age of 4.6 months at LT screening were included. Intraclass correlation coefficients were: tPMSA = 0.94, CSMA = 0.92, and total abdominal fat area = 0.99. Correlation between MUAC z-score and indices of tPMSA, CSMA, and total abdominal fat area were r = 0.02, r = 0.06, and r = 0.43, respectively. The cut-off for sarcopenic obesity was CSMA-to-abdominal fat area ratio below 0.93. Conclusions: In BA infants, it is possible to determine CT-based body metrics during LT screening with very strong interobserver agreement. Poor correlation between CT-based body metrics and MUAC suggests that CT-based body metrics provide additional information on body composition in BA infants, such as relative muscle mass

    Sarcopenia Predicts Early Dose-Limiting Toxicities and Pharmacokinetics of Sorafenib in Patients with Hepatocellular Carcinoma

    Get PDF
    BACKGROUND: Sorafenib induces frequent dose limiting toxicities (DLT) in patients with advanced hepatocellular carcinoma (HCC). Sarcopenia has been associated with poor performance status and shortened survival in cancer patients. PATIENTS AND METHODS: The characteristics of Child Pugh A cirrhotic patients with HCC receiving sorafenib in our institution were retrospectively analyzed. Sorafenib plasma concentrations were determined at each visit. Toxicities were recorded during the first month of treatment, and sarcopenia was determined from baseline CT-scans. RESULTS: Forty patients (30 males) were included. Eleven (27.5%) were sarcopenic. Eighteen patients (45%) experienced a DLT during the first month of treatment. Sarcopenic patients experienced significantly more DLTs than non-sarcopenic patients did (82% versus 31%, p = 0.005). Grade 3 diarrhea was significantly more frequent in sarcopenic patients than in non-sarcopenic patients (45.5% versus 6.9%, p = 0.01), but not grade 3 hand foot syndrome reaction (9% versus 17.2%, p = 1). On day 28, median sorafenib AUC (n = 17) was significantly higher in sarcopenic patients (102.4 mg/l.h versus 53.7 mg/l.h, p = 0.013). CONCLUSIONS: Among cirrhotic Child Pugh A patients with advanced HCC, sarcopenia predicts sorafenib exposure and the occurrence of DLT within the first month of treatment

    Are MRI-defined fat infiltrations in the multifidus muscles associated with low back pain?

    Get PDF
    BACKGROUND: Because training of the lumbar muscles is a commonly recommended intervention in low back pain (LBP), it is important to clarify whether lumbar muscle atrophy is related to LBP. Fat infiltration seems to be a late stage of muscular degeneration, and can be measured in a non-invasive manner using magnetic resonance imaging. The purpose of this study was to investigate if fat infiltration in the lumbar multifidus muscles (LMM) is associated with LBP in adults and adolescents. METHODS: In total, 412 adults (40-year-olds) and 442 adolescents (13-year-olds) from the general Danish population participated in this cross-sectional cohort study. People with LBP were identified through questionnaires. Using MRI, fat infiltration of the LMM was visually graded as none, slight or severe. Odds ratios were calculated for both age groups, taking into account sex, body composition and leisure time physical activity for both groups, and physical workload (in adults only) or daily bicycling (in adolescents only). RESULTS: Fat infiltration was noted in 81% of the adults but only 14% of the adolescents. In the adults, severe fat infiltration was strongly associated with ever having had LBP (OR 9.2; 95% CI 2.0–43.2), and with having LBP in the past year (OR 4.1; 1.5–11.2), but there was no such association in adolescents. None of the investigated moderating factors had an obvious effect on the OR in the adults. CONCLUSION: Fat infiltration in the LMM is strongly associated with LBP in adults only. However, it will be necessary to quantify these measurements objectively and to investigate the direction of this link longitudinally in order to determine if the abnormal muscle is the cause of LBP or vice versa

    Body Composition, Symptoms, and Survival in Advanced Cancer Patients Referred to a Phase I Service

    Get PDF
    Background: Body weight and body composition are relevant to the outcomes of cancer and antineoplastic therapy. However, their role in Phase I clinical trial patients is unknown. Methods: We reviewed symptom burden, body composition, and survival in 104 patients with advanced cancer referred to a Phase I oncology service. Symptom burden was analyzed using the MD Anderson Symptom Assessment Inventory(MDASI); body composition was evaluated utilizing computerized tomography(CT) images. A body mass index (BMI)25kg/m2wasconsideredoverweight.Sarcopenia,severemuscledepletion,wasassessedusingCT−basedcriteria.Results:Mostpatientswereoverweight(n=65,6325 kg/m 2 was considered overweight. Sarcopenia, severe muscle depletion, was assessed using CT-based criteria. Results: Most patients were overweight (n = 65, 63%); 53 patients were sarcopenic (51%), including 79 % of patients with a BMI,25 kg/m 2 and 34 % of those with BMI25 kg/m 2. Sarcopenic patients were older and less frequently African-American. Symptom burden did not differ among patients classified according to BMI and presence of sarcopenia. Median (95% confidence interval) survival (days) varied according to body composition: 215 (71–358) (BMI,25 kg/m 2; sarcopenic), 271 (99–443) (BMI,25 kg/m 2; non-sarcopenic), 484 (286–681) (BMI25kg/m2;sarcopenic);501d(309–693)(BMI25 kg/m 2; sarcopenic); 501 d (309–693) (BMI25 kg/m 2; non-sarcopenic). Higher muscle index and gastrointestinal cancer diagnosis predicted longer survival in multivariate analysis after controlling for age, gender, performance status, and fat index. Conclusions: Patients referred to a Phase I clinic had a high frequency of sarcopenia and a BMI$25 kg/m 2, independent o

    Counteracting Age-related Loss of Skeletal Muscle Mass: a clinical and ethnological trial on the role of protein supplementation and training load (CALM Intervention Study): study protocol for a randomized controlled trial

    Full text link
    • …
    corecore