3,392 research outputs found

    Self-sustained oscillations in whiskers without vortex shedding

    Full text link
    Sensing the flow of water or air disturbance is critical for the survival of many animals: flow information helps them localize food, mates, and prey and to escape predators. Across species, many flow sensors take the form of long, flexible cantilevers. These cantilevers are known to exhibit sustained oscillations when interacting with fluid flow. In the presence of vortex shedding, the oscillations occur through mechanisms such as wake- or vortex-induced vibrations. There is, however, no clear explanation for the mechanisms governing the sustained oscillation of flexible cantilevers without vortex shedding. In recent work, we showed that a flexible cylindrical cantilever could experience sustained oscillations in its first natural vibration mode in water at Reynolds numbers below the critical Reynolds number of vortex shedding. The oscillations were shown to be driven by a frequency match (synchronization) between the flow frequency and the cantilever's first-mode natural frequency. Here, we use a body-fitted fluid-structure solver based on the Navier-Stokes and nonlinear structural equations to simulate the dynamics of a cantilevered whisker in the air at a subcritical value of Reynolds number. Results show that second-mode synchronization governs the whisker's sustained oscillation. Wavy patterns in the shear layer dominate the whisker's wake during the vibrations, indicating that parallel shear layers synchronize with the whisker's motion. As a result of this synchronization, oval-shaped motion trajectories, with matching streamwise and cross-flow vibration frequencies, are observed along the whisker. The outcomes of this study suggest possible directions for designing artificial bio-inspired flow sensors

    The Morphology of the Rat Vibrissal Array: A Model for Quantifying Spatiotemporal Patterns of Whisker-Object Contact

    Get PDF
    In all sensory modalities, the data acquired by the nervous system is shaped by the biomechanics, material properties, and the morphology of the peripheral sensory organs. The rat vibrissal (whisker) system is one of the premier models in neuroscience to study the relationship between physical embodiment of the sensor array and the neural circuits underlying perception. To date, however, the three-dimensional morphology of the vibrissal array has not been characterized. Quantifying array morphology is important because it directly constrains the mechanosensory inputs that will be generated during behavior. These inputs in turn shape all subsequent neural processing in the vibrissal-trigeminal system, from the trigeminal ganglion to primary somatosensory (“barrel”) cortex. Here we develop a set of equations for the morphology of the vibrissal array that accurately describes the location of every point on every whisker to within ±5% of the whisker length. Given only a whisker's identity (row and column location within the array), the equations establish the whisker's two-dimensional (2D) shape as well as three-dimensional (3D) position and orientation. The equations were developed via parameterization of 2D and 3D scans of six rat vibrissal arrays, and the parameters were specifically chosen to be consistent with those commonly measured in behavioral studies. The final morphological model was used to simulate the contact patterns that would be generated as a rat uses its whiskers to tactually explore objects with varying curvatures. The simulations demonstrate that altering the morphology of the array changes the relationship between the sensory signals acquired and the curvature of the object. The morphology of the vibrissal array thus directly constrains the nature of the neural computations that can be associated with extraction of a particular object feature. These results illustrate the key role that the physical embodiment of the sensor array plays in the sensing process

    Measurements of branching fraction ratios and CP-asymmetries in suppressed B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^- decays

    Get PDF
    We report the first reconstruction in hadron collisions of the suppressed decays B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^-, sensitive to the CKM phase gamma, using data from 7 fb^-1 of integrated luminosity collected by the CDF II detector at the Tevatron collider. We reconstruct a signal for the B^- -> D(-> K^+ pi^-)K^- suppressed mode with a significance of 3.2 standard deviations, and measure the ratios of the suppressed to favored branching fractions R(K) = [22.0 \pm 8.6(stat)\pm 2.6(syst)]\times 10^-3, R^+(K) = [42.6\pm 13.7(stat)\pm 2.8(syst)]\times 10^-3, R^-(K)= [3.8\pm 10.3(stat)\pm 2.7(syst]\times 10^-3, as well as the direct CP-violating asymmetry A(K) = -0.82\pm 0.44(stat)\pm 0.09(syst) of this mode. Corresponding quantities for B^- -> D(-> K^+ pi^-)pi^- decay are also reported.Comment: 8 pages, 1 figure, accepted by Phys.Rev.D Rapid Communications for Publicatio

    Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV

    Full text link
    Two-particle angular correlations between unidentified charged trigger and associated particles are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum range 0.7 <pT,assoc<pT,trig< < p_{\rm{T}, assoc} < p_{\rm{T}, trig} < 5.0 GeV/cc is examined, to include correlations induced by jets originating from low momen\-tum-transfer scatterings (minijets). The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range η<0.9|\eta|<0.9. The near-side long-range pseudorapidity correlations observed in high-multiplicity p-Pb collisions are subtracted from both near-side short-range and away-side correlations in order to remove the non-jet-like components. The yields in the jet-like peaks are found to be invariant with event multiplicity with the exception of events with low multiplicity. This invariance is consistent with the particles being produced via the incoherent fragmentation of multiple parton--parton scatterings, while the yield related to the previously observed ridge structures is not jet-related. The number of uncorrelated sources of particle production is found to increase linearly with multiplicity, suggesting no saturation of the number of multi-parton interactions even in the highest multiplicity p-Pb collisions. Further, the number scales in the intermediate multiplicity region with the number of binary nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/161
    corecore