50 research outputs found

    Immunocytochemical and electrophysiological characterization of GABA receptors in the frog and turtle retina

    Get PDF
    AbstractThe expression of GABA receptors (GABARs) was studied in frog and turtle retinae. Using immunocytochemical methods, GABAARs and GABACRs were preferentially localized to the inner plexiform layer (IPL). Label in the IPL was punctate indicating a synaptic clustering of GABARs. Distinct, but weaker label was also present in the outer plexiform layer. GABAAR and GABACR mediated effects were studied by recording electroretinograms (ERGs) and by the application of specific antagonists. Bicuculline, the GABAAR antagonist, produced a significant increase of the ERG. Picrotoxin, when co-applied with saturating doses of bicuculline, caused a further increase of the ERG due to blocking of GABACRs. The putative GABACR antagonist Imidazole-4-acidic acid (I4AA) failed to antagonize GABACR mediated inhibition and, in contrast, appeared rather as an agonist of GABARs

    A New Diketopiperazine, Cyclo-(4-S-hydroxy-R-proline-R-isoleucine), from an Australian Specimen of the Sponge Stelletta sp. †

    Get PDF
    While investigating the cytotoxic activity of the methanol extract of an Australian marine sponge Stelletta sp. (Demospongiae), a new diketopiperazine, cyclo-(4-S-hydroxy-R-proline-R-isoleucine) (1), was isolated together with the known bengamides; A (2), F (3), N (4), Y (5), and bengazoles; Z (6), C4 (7) and C6 (8). The isolation and structure elucidation of the diketopiperazine (1), together with the activity of 1–8 against a panel of human and mammalian cell lines are discussed

    Phylogenetically and spatially close marine sponges harbour divergent bacterial communities

    Get PDF
    Recent studies have unravelled the diversity of sponge-associated bacteria that may play essential roles in sponge health and metabolism. Nevertheless, our understanding of this microbiota remains limited to a few host species found in restricted geographical localities, and the extent to which the sponge host determines the composition of its own microbiome remains a matter of debate. We address bacterial abundance and diversity of two temperate marine sponges belonging to the Irciniidae family - Sarcotragus spinosulus and Ircinia variabilis – in the Northeast Atlantic. Epifluorescence microscopy revealed that S. spinosulus hosted significantly more prokaryotic cells than I. variabilis and that prokaryotic abundance in both species was about 4 orders of magnitude higher than in seawater. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) profiles of S. spinosulus and I. variabilis differed markedly from each other – with higher number of ribotypes observed in S. spinosulus – and from those of seawater. Four PCR-DGGE bands, two specific to S. spinosulus, one specific to I. variabilis, and one present in both sponge species, affiliated with an uncultured sponge-specific phylogenetic cluster in the order Acidimicrobiales (Actinobacteria). Two PCR-DGGE bands present exclusively in S. spinosulus fingerprints affiliated with one sponge-specific phylogenetic cluster in the phylum Chloroflexi and with sponge-derived sequences in the order Chromatiales (Gammaproteobacteria), respectively. One Alphaproteobacteria band specific to S. spinosulus was placed in an uncultured sponge-specific phylogenetic cluster with a close relationship to the genus Rhodovulum. Our results confirm the hypothesized host-specific composition of bacterial communities between phylogenetically and spatially close sponge species in the Irciniidae family, with S. spinosulus displaying higher bacterial community diversity and distinctiveness than I. variabilis. These findings suggest a pivotal host-driven effect on the shape of the marine sponge microbiome, bearing implications to our current understanding of the distribution of microbial genetic resources in the marine realm.This work was financed by the Portuguese Foundation for Science and Technology (FCT - http://www.fct.pt) through the research project PTDC/MAR/101431/2008. CCPH has a PhD fellowship granted by FCT (Grant No. SFRH/BD/60873/2009). JRX’s research is funded by a FCT postdoctoral fellowship (grant no. SFRH/BPD/62946/2009). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Asenjonamides A–C, antibacterial metabolites isolated from Streptomyces asenjonii strain KNN 42.f from an extreme-hyper arid Atacama Desert soil

    Get PDF
    Bio-guided fractionation of the culture broth extract of Streptomyces asenjonii strain KNN 42.f recovered from an extreme hyper-arid Atacama Desert soil in northern Chile led to the isolation of three new bioactive ?-diketones; asenjonamides A–C (1–3) in addition to the known N-(2-(1H-indol-3-yl)-2-oxoethyl)acetamide (4), a series of bioactive acylated 4-aminoheptosyl-?-N-glycosides; spicamycins A–E (5–9), and seven known diketopiperazines (10–16). All isolated compounds were characterized by HRESIMS and NMR analyses and tested for their antibacterial effect against a panel of bacteria
    corecore