101 research outputs found

    Integrated radar and lidar analysis reveals extensive loss of remaining intact forest on Sumatra 2007–2010

    Get PDF
    Forests with high above-ground biomass (AGB), including those growing on peat swamps, have historically not been thought suitable for biomass mapping and changedetection using synthetic aperture radar (SAR). However, by integrating L-band (λ = 0.23 m) SAR from the ALOS and lidar from the ICESat Earth-Observing satellites with 56 field plots, we were able to create a forest biomass and change map for a 10.7 Mha section of eastern Sumatra that still contains high AGB peat swamp forest. Using a time series of SAR data we estimated changes in both forest area and AGB. We estimate that there was 274 ± 68 Tg AGB remaining in natural forest (≥ 20 m height) in the study area in 2007, with this stock reducing by approximately 11.4 % over the subsequent 3 years. A total of 137.4 kha of the study area was deforested between 2007 and 2010, an average rate of 3.8 % yr−1. The ability to attribute forest loss to different initial biomass values allows for far more effective monitoring and baseline modelling for avoided deforestation projects than traditional, optical-based remote sensing. Furthermore, given SAR’s ability to penetrate the smoke and cloud which normally obscure land cover change in this region, SARbased forest monitoring can be relied on to provide frequent imagery. This study demonstrates that, even at Lband, which typically saturates at medium biomass levels (ca. 150 Mg ha−1), in conjunction with lidar data, it is possible to make reliable estimates of not just the area but also the carbon emissions resulting from land use change

    Topographic roughness as a signature of the emergence of bedrock in eroding landscapes

    Get PDF
    Rock is exposed at the Earth surface when rates of erosion locally exceed rates of soil production. The thinning of soils and emergence of bedrock has implications spanning geomorphology, ecology and hydrology. Soil-mantled hillslopes are typically shaped by diffusion-like sediment transport processes that act to smooth topography through time, generating the familiar smooth, convex hillslope profiles that are common in low relief landscapes. Other processes, however, can roughen the landscape. Bedrock emergence can produce rough terrain; in this contribution we exploit the contrast between rough patches of bedrock outcrop and smooth, diffusion-dominated soil to detect bedrock outcrops. Specifically, we demonstrate that the local variability of surface normal vectors, measured from 1 m resolution airborne LiDAR data, can be used as a topographic signature to identify areas within landscapes where rock exposure is present. We then use this roughness metric to investigate the transition from soil-mantled to bedrock hillslopes as erosion rates increase in two transient landscapes, Bald Rock Basin, which drains into the Middle Fork Feather River, California, and Harrington Creek, a tributary of the Salmon River, Idaho. Rather than being abrupt, as predicted by traditional soil production models, in both cases the transition from fully soil-mantled to bedrock hillslopes is gradual and spatially heterogeneous, with rapidly eroding hillslopes supporting a patchwork of bedrock and soil that is well documented by changes in topographic roughness, highlighting the utility of this metric for testing hypotheses concerning the emergence of bedrock and adding to a growing body of evidence that indicates the persistence of partial soil mantles in steep, rapidly eroding landscapes

    A New Field Protocol for Monitoring Forest Degradation

    Get PDF
    Forest degradation leads to the gradual reduction of forest carbon stocks, function, and biodiversity following anthropogenic disturbance. Whilst tropical degradation is a widespread problem, it is currently very under-studied and its magnitude and extent are largely unknown. This is due, at least in part, to the lack of developed and tested methods for monitoring degradation. Due to the relatively subtle and ongoing changes associated with degradation, which can include the removal of small trees for fuelwood or understory clearance for agricultural production, it is very hard to detect using Earth Observation. Furthermore, degrading activities are normally spatially heterogeneous and stochastic, and therefore conventional forest inventory plots distributed across a landscape do not act as suitable indicators: at best only a small proportion of plots (often zero) will actually be degraded in a landscape undergoing active degradation. This problem is compounded because the metal tree tags used in permanent forest inventory plots likely deter tree clearance, biasing inventories toward under-reporting change. We have therefore developed a new forest plot protocol designed to monitor forest degradation. This involves a plot that can be set up quickly, so a large number can be established across a landscape, and easily remeasured, even though it does not use tree tags or other obvious markers. We present data from a demonstration plot network set up in Jalisco, Mexico, which were measured twice between 2017 and 2018. The protocol was successful, with one plot detecting degradation under our definition (losing greater than 10% AGB but remaining forest), and a further plot being deforested for Avocado (Persea americana) production. Live AGB ranged from 8.4 Mg ha–1 to 140.8 Mg ha–1 in Census 1, and from 0 Mg ha–1 to 144.2 Mg ha–1 Census 2, with four of ten plots losing AGB, and the remainder staying stable or showing slight increases. We suggest this protocol has great potential for underpinning appropriate forest plot networks for degradation monitoring, potentially in combination with Earth Observation analysis, but also in isolation

    On Kinks and Bound States in the Gross-Neveu Model

    Full text link
    We investigate static space dependent \sigx=\lag\bar\psi\psi\rag saddle point configurations in the two dimensional Gross-Neveu model in the large N limit. We solve the saddle point condition for \sigx explicitly by employing supersymmetric quantum mechanics and using simple properties of the diagonal resolvent of one dimensional Schr\"odinger operators rather than inverse scattering techniques. The resulting solutions in the sector of unbroken supersymmetry are the Callan-Coleman-Gross-Zee kink configurations. We thus provide a direct and clean construction of these kinks. In the sector of broken supersymmetry we derive the DHN saddle point configurations. Our method of finding such non-trivial static configurations may be applied also in other two dimensional field theories.Comment: Revised version. A new section added with derivation of the DHN static configurations in the sector of broken supersymmetry. Some references added as well. 25 pp, latex, e-mail [email protected]

    Circularly polarized electroluminescence from silicon nanostructures heavily doped with boron

    Full text link
    The circularly polarized electroluminescence (CPEL) from silicon nanostructures which are the p-type ultra-narrow silicon quantum well (Si-QW) confined by {\delta}-barriers heavily doped with boron, 5 10^21 cm^-3, is under study as a function of temperature and excitation levels. The CPEL dependences on the forward current and temperature show the circularly polarized light emission which appears to be caused by the exciton recombination through the negative-U dipole boron centers at the Si-QW {\delta}-barriers interface

    Age, extent and carbon storage of the central Congo Basin peatland complex

    Get PDF
    Peatlands are carbon-rich ecosystems that cover just three per cent of Earth's land surface, but store one-third of soil carbon. Peat soils are formed by the build-up of partially decomposed organic matter under waterlogged anoxic conditions. Most peat is found in cool climatic regions where unimpeded decomposition is slower, but deposits are also found under some tropical swamp forests. Here we present field measurements from one of the world's most extensive regions of swamp forest, the Cuvette Centrale depression in the central Congo Basin. We find extensive peat deposits beneath the swamp forest vegetation (peat defined as material with an organic matter content of at least 65 per cent to a depth of at least 0.3 metres). Radiocarbon dates indicate that peat began accumulating from about 10,600 years ago, coincident with the onset of more humid conditions in central Africa at the beginning of the Holocene. The peatlands occupy large interfluvial basins, and seem to be largely rain-fed and ombrotrophic-like (of low nutrient status) systems. Although the peat layer is relatively shallow (with a maximum depth of 5.9 metres and a median depth of 2.0 metres), by combining in situ and remotely sensed data, we estimate the area of peat to be approximately 145,500 square kilometres (95 per cent confidence interval of 131,900-156,400 square kilometres), making the Cuvette Centrale the most extensive peatland complex in the tropics. This area is more than five times the maximum possible area reported for the Congo Basin in a recent synthesis of pantropical peat extent. We estimate that the peatlands store approximately 30.6 petagrams (30.6 × 10(15) grams) of carbon belowground (95 per cent confidence interval of 6.3-46.8 petagrams of carbon)-a quantity that is similar to the above-ground carbon stocks of the tropical forests of the entire Congo Basin. Our result for the Cuvette Centrale increases the best estimate of global tropical peatland carbon stocks by 36 per cent, to 104.7 petagrams of carbon (minimum estimate of 69.6 petagrams of carbon; maximum estimate of 129.8 petagrams of carbon). This stored carbon is vulnerable to land-use change and any future reduction in precipitation

    Screen-detected colorectal cancers are associated with an improved outcome compared with stage-matched interval cancers

    Get PDF
    Background: Colorectal cancers (CRCs) detected through the NHS Bowel Cancer Screening Programme (BCSP) have been shown to have a more favourable outcome compared to non-screen-detected cancers. The aim was to identify whether this was solely due to the earlier stage shift of these cancers, or whether other factors were involved. Methods: A combination of a regional CRC registry (Northern Colorectal Cancer Audit Group) and the BCSP database were used to identify screen-detected and interval cancers (diagnosed after a negative faecal occult blood test, before the next screening round), diagnosed between April 2007 and March 2010, within the North East of England. For each Dukes' stage, patient demographics, tumour characteristics, and survival rates were compared between these two groups. Results: Overall, 322 screen-detected cancers were compared against 192 interval cancers. Screen-detected Dukes' C and D CRCs had a superior survival rate compared with interval cancers (P=0.014 and P=0.04, respectively). Cox proportional hazards regression showed that Dukes' stage, tumour location, and diagnostic group (HR 0.45, 95% CI 0.29-0.69, P<0.001 for screen-detected CRCs) were all found to have a significant impact on the survival of patients. Conclusions: The improved survival of screen-detected over interval cancers for stages C and D suggest that there may be a biological difference in the cancers in each group. Although lead-time bias may have a role, this may be related to a tumour's propensity to bleed and therefore may reflect detection through current screening tests

    Aboveground forest biomass varies across continents, ecological zones and successional stages: Refined IPCC default values for tropical and subtropical forests

    Get PDF
    For monitoring and reporting forest carbon stocks and fluxes, many countries in the tropics and subtropics rely on default values of forest aboveground biomass (AGB) from the Intergovernmental Panel on Climate Change (IPCC) guidelines for National Greenhouse Gas (GHG) Inventories. Default IPCC forest AGB values originated from 2006, and are relatively crude estimates of average values per continent and ecological zone. The 2006 default values were based on limited plot data available at the time, methods for their derivation were not fully clear, and no distinction between successional stages was made. As part of the 2019 Refinement to the 2006 IPCC Guidelines for GHG Inventories, we updated the default AGB values for tropical and subtropical forests based on AGB data from &gt;25 000 plots in natural forests and a global AGB map where no plot data were available. We calculated refined AGB default values per continent, ecological zone, and successional stage, and provided a measure of uncertainty. AGB in tropical and subtropical forests varies by an order of magnitude across continents, ecological zones, and successional stage. Our refined default values generally reflect the climatic gradients in the tropics, with more AGB in wetter areas. AGB is generally higher in old-growth than in secondary forests, and higher in older secondary (regrowth &gt;20 years old and degraded/logged forests) than in young secondary forests (20 years old). While refined default values for tropical old-growth forest are largely similar to the previous 2006 default values, the new default values are 4.0-7.7-fold lower for young secondary forests. Thus, the refined values will strongly alter estimated carbon stocks and fluxes, and emphasize the critical importance of old-growth forest conservation. We provide a reproducible approach to facilitate future refinements and encourage targeted efforts to establish permanent plots in areas with data gaps

    Risks to carbon storage from land-use change revealed by peat thickness maps of Peru

    Get PDF
    This work was funded by NERC (grant ref. NE/R000751/1) to I.T.L., A.H., K.H.R., E.T.A.M., C.M.A., T.R.B., G.D. and E.C.D.G.; Leverhulme Trust (grant ref. RPG-2018-306) to K.H.R., L.E.S.C. and C.E.W.; Gordon and Betty Moore Foundation (grant no. 5439, MonANPeru network) to T.R.B., E.N.H.C. and G.F.; Wildlife Conservation Society to E.N.H.C.; Concytec/British Council/Embajada Británica Lima/Newton Fund (grant ref. 220–2018) to E.N.H.C. and J.D.; Concytec/NERC/Embajada Británica Lima/Newton Fund (grant ref. 001–2019) to E.N.H.C. and N.D.; the governments of the United States (grant no. MTO-069018) and Norway (grant agreement no. QZA-12/0882) to K.H.; and NERC Knowledge Exchange Fellowship (grant ref no. NE/V018760/1) to E.N.H.C.Tropical peatlands are among the most carbon-dense ecosystems but land-use change has led to the loss of large peatland areas, associated with substantial greenhouse gas emissions. To design effective conservation and restoration policies, maps of the location and carbon storage of tropical peatlands are vital. This is especially so in countries such as Peru where the distribution of its large, hydrologically intact peatlands is poorly known. Here field and remote sensing data support the model development of peatland extent and thickness for lowland Peruvian Amazonia. We estimate a peatland area of 62,714 km2 (5th and 95th confidence interval percentiles of 58,325 and 67,102 km2, respectively) and carbon stock of 5.4 (2.6–10.6) PgC, a value approaching the entire above-ground carbon stock of Peru but contained within just 5% of its land area. Combining the map of peatland extent with national land-cover data we reveal small but growing areas of deforestation and associated CO2 emissions from peat decomposition due to conversion to mining, urban areas and agriculture. The emissions from peatland areas classified as forest in 2000 represent 1–4% of Peruvian CO2 forest emissions between 2000 and 2016. We suggest that bespoke monitoring, protection and sustainable management of tropical peatlands are required to avoid further degradation and CO2 emissions.PostprintPeer reviewe

    Congo Basin peatlands: threats and conservation priorities

    Get PDF
    The recent publication of the first spatially explicit map of peatlands in the Cuvette Centrale, central Congo Basin, reveals it to be the most extensive tropical peatland complex, at ca. 145,500 km2. With an estimated 30.6 Pg of carbon stored in these peatlands, there are now questions about whether these carbon stocks are under threat and, if so, what can be done to protect them. Here, we analyse the potential threats to Congo Basin peat carbon stocks and identify knowledge gaps in relation to these threats, and to how the peatland systems might respond. Climate change emerges as a particularly pressing concern, given its potential to destabilise carbon stocks across the whole area. Socio-economic developments are increasing across central Africa and, whilst much of the peatland area is protected on paper by some form of conservation designation, the potential exists for hydrocarbon exploration, logging, plantations and other forms of disturbance to significantly damage the peatland ecosystems. The low level of human intervention at present suggests that the opportunity still exists to protect the peatlands in a largely intact state, possibly drawing on climate change mitigation funding, which can be used not only to protect the peat carbon pool but also to improve the livelihoods of people living in and around these peatlands
    corecore