421 research outputs found

    Serine Phosphorylation of SR Proteins Is Required for Their Recruitment to Sites of Transcription In Vivo

    Get PDF
    Expression of most RNA polymerase II transcripts requires the coordinated execution of transcription, splicing, and 3′ processing. We have previously shown that upon transcriptional activation of a gene in vivo, pre-mRNA splicing factors are recruited from nuclear speckles, in which they are concentrated, to sites of transcription (Misteli, T., J.F. Cáceres, and D.L. Spector. 1997. Nature. 387:523–527). This recruitment process appears to spatially coordinate transcription and pre-mRNA splicing within the cell nucleus. Here we have investigated the molecular basis for recruitment by analyzing the recruitment properties of mutant splicing factors. We show that multiple protein domains are required for efficient recruitment of SR proteins from nuclear speckles to nascent RNA. The two types of modular domains found in the splicing factor SF2/ ASF exert distinct functions in this process. In living cells, the RS domain functions in the dissociation of the protein from speckles, and phosphorylation of serine residues in the RS domain is a prerequisite for this event. The RNA binding domains play a role in the association of splicing factors with the target RNA. These observations identify a novel in vivo role for the RS domain of SR proteins and suggest a model in which protein phosphorylation is instrumental for the recruitment of these proteins to active sites of transcription in vivo

    Successful Implementation of a Window for Routine Antimicrobial Prophylaxis Shorter than That of the World Health Organization Standard

    Get PDF
    Objective. To evaluate the feasibility of implementation of the refined window for routine antimicrobial prophylaxis (RAP) of 30-74 minutes before skin incision compared to the World Health Organization (WHO) standard of 0-60 minutes. Design. Prospective study on timing of routine antimicrobial prophylaxis in 2 different time periods. Setting. Tertiary referral university hospital with 30,000 surgical procedures per year. Methods. In all consecutive vascular, visceral, and trauma procedures, the timing was prospectively recorded during a first time period of 2 years (A; baseline) and a second period of 1 year (B; after intervention). An intensive intervention program was initiated after baseline. The primary outcome parameter was timing; the secondary outcome parameter was surgical site infection (SSI) rate in the subgroup of patients undergoing cholecystectomy/colon resection. Results. During baseline time period A (3,836 procedures), RAP was administered 30-74 minutes before skin incision in 1,750 (41.0%) procedures; during time period B (1,537 procedures), it was administered in 914 (56.0%; P < .001). The subgroup analysis did not reveal a significant difference in SSI rate. Conclusions. This bundle of interventions resulted in a statistically significant improvement of timing of RAP even at a shortened window compared to the WHO standar

    Economic Burden of Surgical Site Infections at a European University Hospital

    Get PDF
    Objective. To quantify the economic burden of in-hospital surgical site infections (SSIs) at a European university hospital. Design. Matched case-control study nested in a prospective observational cohort study. Setting. Basel University Hospital in Switzerland, where an average of 28,000 surgical procedures are performed per year. Methods. All in-hospital occurrences of SSI associated with surgeries performed between January 1, 2000, and December 31, 2001, by the visceral, vascular, and traumatology divisions at Basel University Hospital were prospectively recorded. Each case patient was matched to a control patient by age, procedure code, and National Nosocomial Infection Surveillance System risk index. The case-control pairs were analyzed for differences in cost of hospital care and in provision of specialized care. Results. A total of 6,283 procedures were performed:187 SSIs were detected in inpatients, 168 of whom were successfully matched with a control patient. For case patients, the mean additional hospital cost was SwF19,638 (95% confidence interval [CI], SwF8,492-SwF30,784); the mean additional postoperative length of hospital stay was 16.8 days (95% CI, 13-20.6 days); and the mean additional in-hospital duration of antibiotic therapy was 7.4 days (95% CI, 5.1-9.6 days). Differences were primarily attributable to organ space SSIs (n = 76). Conclusions. Ina European university hospital setting, SSIs are costly and constitute a heavy and potentially preventable burden on both patients and healthcare provider

    Spatial and topological organization of DNA chains induced by gene co-localization

    Get PDF
    Transcriptional activity has been shown to relate to the organization of chromosomes in the eukaryotic nucleus and in the bacterial nucleoid. In particular, highly transcribed genes, RNA polymerases and transcription factors gather into discrete spatial foci called transcription factories. However, the mechanisms underlying the formation of these foci and the resulting topological order of the chromosome remain to be elucidated. Here we consider a thermodynamic framework based on a worm-like chain model of chromosomes where sparse designated sites along the DNA are able to interact whenever they are spatially close-by. This is motivated by recurrent evidence that there exists physical interactions between genes that operate together. Three important results come out of this simple framework. First, the resulting formation of transcription foci can be viewed as a micro-phase separation of the interacting sites from the rest of the DNA. In this respect, a thermodynamic analysis suggests transcription factors to be appropriate candidates for mediating the physical interactions between genes. Next, numerical simulations of the polymer reveal a rich variety of phases that are associated with different topological orderings, each providing a way to increase the local concentrations of the interacting sites. Finally, the numerical results show that both one-dimensional clustering and periodic location of the binding sites along the DNA, which have been observed in several organisms, make the spatial co-localization of multiple families of genes particularly efficient.Comment: Figures and Supplementary Material freely available on http://dx.doi.org/10.1371/journal.pcbi.100067

    A dynamical model reveals gene co-localizations in nucleus

    Get PDF
    Co-localization of networks of genes in the nucleus is thought to play an important role in determining gene expression patterns. Based upon experimental data, we built a dynamical model to test whether pure diffusion could account for the observed co-localization of genes within a defined subnuclear region. A simple standard Brownian motion model in two and three dimensions shows that preferential co-localization is possible for co-regulated genes without any direct interaction, and suggests the occurrence may be due to a limitation in the number of available transcription factors. Experimental data of chromatin movements demonstrates that fractional rather than standard Brownian motion is more appropriate to model gene mobilizations, and we tested our dynamical model against recent static experimental data, using a sub-diffusion process by which the genes tend to colocalize more easily. Moreover, in order to compare our model with recently obtained experimental data, we studied the association level between genes and factors, and presented data supporting the validation of this dynamic model. As further applications of our model, we applied it to test against more biological observations. We found that increasing transcription factor number, rather than factory number and nucleus size, might be the reason for decreasing gene co-localization. In the scenario of frequency-or amplitude-modulation of transcription factors, our model predicted that frequency-modulation may increase the co-localization between its targeted genes

    ISWI Regulates Higher-Order Chromatin Structure and Histone H1 Assembly In Vivo

    Get PDF
    Imitation SWI (ISWI) and other ATP-dependent chromatin-remodeling factors play key roles in transcription and other processes by altering the structure and positioning of nucleosomes. Recent studies have also implicated ISWI in the regulation of higher-order chromatin structure, but its role in this process remains poorly understood. To clarify the role of ISWI in vivo, we examined defects in chromosome structure and gene expression resulting from the loss of Iswi function in Drosophila. Consistent with a broad role in transcriptional regulation, the expression of a large number of genes is altered in Iswi mutant larvae. The expression of a dominant-negative form of ISWI leads to dramatic alterations in higher-order chromatin structure, including the apparent decondensation of both mitotic and polytene chromosomes. The loss of ISWI function does not cause obvious defects in nucleosome assembly, but results in a significant reduction in the level of histone H1 associated with chromatin in vivo. These findings suggest that ISWI plays a global role in chromatin compaction in vivo by promoting the association of the linker histone H1 with chromatin

    Discrete States of a Protein Interaction Network Govern Interphase and Mitotic Microtubule Dynamics

    Get PDF
    The cytoplasm of eukaryotic cells is thought to adopt discrete “states” corresponding to different steady states of protein networks that govern changes in subcellular organization. For example, in Xenopus eggs, the interphase to mitosis transition is induced solely by activation of cyclin-dependent kinase 1 (CDK1) that phosphorylates many proteins leading to a reorganization of the nucleus and assembly of the mitotic spindle. Among these changes, the large array of stable microtubules that exists in interphase is replaced by short, highly dynamic microtubules in metaphase. Using a new visual immunoprecipitation assay that quantifies pairwise protein interactions in a non-perturbing manner in Xenopus egg extracts, we reveal the existence of a network of interactions between a series of microtubule-associated proteins (MAPs). In interphase, tubulin interacts with XMAP215, which is itself interacting with XKCM1, which connects to APC, EB1, and CLIP170. In mitosis, tubulin interacts with XMAP215, which is connected to EB1. We show that in interphase, microtubules are stable because the catastrophe-promoting activity of XKCM1 is inhibited by its interactions with the other MAPs. In mitosis, microtubules are short and dynamic because XKCM1 is free and has a strong destabilizing activity. In this case, the interaction of XMAP215 with EB1 is required to counteract the strong activity of XKCM1. This provides the beginning of a biochemical description of the notion of “cytoplasmic states” regarding the microtubule system

    Long-Range Autocorrelations of CpG Islands in the Human Genome

    Get PDF
    In this paper, we use a statistical estimator developed in astrophysics to study the distribution and organization of features of the human genome. Using the human reference sequence we quantify the global distribution of CpG islands (CGI) in each chromosome and demonstrate that the organization of the CGI across a chromosome is non-random, exhibits surprisingly long range correlations (10 Mb) and varies significantly among chromosomes. These correlations of CGI summarize functional properties of the genome that are not captured when considering variation in any particular separate (and local) feature. The demonstration of the proposed methods to quantify the organization of CGI in the human genome forms the basis of future studies. The most illuminating of these will assess the potential impact on phenotypic variation of inter-individual variation in the organization of the functional features of the genome within and among chromosomes, and among individuals for particular chromosomes
    corecore