11 research outputs found

    The Pheno- and Genotypic Characterization of Porcine Escherichia coli Isolates

    Get PDF
    Escherichia (E.) coli is the main causative pathogen of neonatal and post-weaning diarrhea and edema disease in swine production. There is a significant health concern due to an increasing number of human infections associated with food and/or environmental-borne pathogenic and multidrug-resistant E. coli worldwide. Monitoring the presence of pathogenic and antimicrobial-resistant E. coli isolates is essential for sustainable disease management in livestock and human medicine. A total of 102 E. coli isolates of diseased pigs were characterized by antimicrobial and biocide susceptibility testing. Antimicrobial resistance genes, including mobile colistin resistance genes, were analyzed by PCR and DNA sequencing. The quinolone resistance-determining regions of gyrA and parC in ciprofloxacin-resistant isolates were analyzed. Clonal relatedness was investigated by two-locus sequence typing (CH clonotyping). Phylotyping was performed by the Clermont multiplex PCR method. Virulence determinants were analyzed by customized DNA-based microarray technology developed in this study for fast and economic molecular multiplex typing. Thirty-five isolates were selected for whole-genome sequence-based analysis. Most isolates were resistant to ampicillin and tetracycline. Twenty-one isolates displayed an ESBL phenotype and one isolate an AmpC β-lactamase-producing phenotype. Three isolates had elevated colistin minimal inhibitory concentrations and carried the mcr-1 gene. Thirty-seven isolates displayed a multi-drug resistance phenotype. The most predominant β-lactamase gene classes were blaTEM-1 (56%) and blaCTX-M-1 (13.71%). Mutations in QRDR were observed in 14 ciprofloxacin-resistant isolates. CH clonotyping divided all isolates into 51 CH clonotypes. The majority of isolates belonged to phylogroup A. Sixty-four isolates could be assigned to defined pathotypes wherefrom UPEC was predominant. WGS revealed that the most predominant sequence type was ST100, followed by ST10. ST131 was detected twice in our analysis. This study highlights the importance of monitoring antimicrobial resistance and virulence properties of porcine E. coli isolates. This can be achieved by applying reliable, fast, economic and easy to perform technologies such as DNA-based microarray typing. The presence of high-risk pathogenic multi-drug resistant zoonotic clones, as well as those that are resistant to critically important antibiotics for humans, can pose a risk to public health. Improved protocols may be developed in swine farms for preventing infections, as well as the maintenance and distribution of the causative isolates

    European multicenter study on antimicrobial resistance in bacteria isolated from companion animal urinary tract infections

    Get PDF
    BACKGROUND: There is a growing concern regarding the increase of antimicrobial resistant bacteria in companion animals. Yet, there are no studies comparing the resistance levels of these organisms in European countries. The aim of this study was to investigate geographical and temporal trends of antimicrobial resistant bacteria causing urinary tract infection (UTI) in companion animals in Europe. The antimicrobial susceptibility of 22 256 bacteria isolated from dogs and cats with UTI was determined. Samples were collected between 2008 and 2013 from 16 laboratories of 14 European countries. The prevalence of antimicrobial resistance of the most common bacteria was determined for each country individually in the years 2012-2013 and temporal trends of bacteria resistance were established by logistic regression. RESULTS: The aetiology of uropathogenic bacteria differed between dogs and cats. For all bacterial species, Southern countries generally presented higher levels of antimicrobial resistance compared to Northern countries. Multidrug-resistant Escherichia coli were found to be more prevalent in Southern countries. During the study period, the level of fluoroquinolone-resistant E. coli isolated in Belgium, Denmark, France and the Netherlands decreased significantly. A temporal increase in resistance to amoxicillin-clavulanate and gentamicin was observed among E. coli isolates from the Netherlands and Switzerland, respectively. Other country-specific temporal increases were observed for fluoroquinolone-resistant Proteus spp. isolated from companion animals from Belgium. CONCLUSIONS: This work brings new insights into the current status of antimicrobial resistance in bacteria isolated from companion animals with UTI in Europe and reinforces the need for strategies aiming to reduce resistance

    Alkylation of N-substituted-2-phenylacetamides

    No full text

    Determination of quercetin in pharmaceutical formations via its reaction with potassium titanyloxalate. Determination of the stability constants of the quercetin titanyloxalato complex

    Get PDF
    Asimple, rapid and accurate procedure for the quantitative determination of quercetin in its pure form and in formulations has been developed. The method is based on the spectrophotometric determination of a complex formed between quercetin and potassium titanyloxalate in 50 % ethanolic solutions. To characterize the quercetin titanyloxalato complex, the stability constants of the complex were determinated potentiometrically and spectrophotometrically at different temperatures (T = 26.0 oC, 34 oC and 39.0 oC), as well as at different ionic strengths (I = 5.0Ã10-4 mol dm-3, 3.0Ã10-2 mol dm-3 and 6.0Ã10-2 mol dm-3) and the thermodynamic parameters were calculated. As quercetin is usually conjugated to vitamin C in pharmaceutical formulations, two procedures for the quantitative determination of quercetin by this complexing reaction were tested both in the absence and presence of ascorbic acid. In both procedures, the Beer law was obeyed over the same concentration range of quercetin, i.e., 0.85 mg mL-1Ã16.9 mg mL-1. In the first procedure in the absence of ascobic acid the molar absorptivity coefficient of the quercetin-titanyloxalate complex is a = 2.49Ã104 mol-1 dm3 cm-1, Sandells sensitivity of the method is S = 1.35Ã10-2 mg cm-2 and the detection limit is d = 0.67 mg mL-1. Whereas, in the presence of ascorbic acid (second procedure) a = 3.04Ã104 mol-1 dm3 cm-1, S = 1.11Ã10-2 ug mL-1. The proposed method was verified for the determination of quercetin in pharmaceutical dosage forms

    Cellulose Acetate Membranes Modification by Aminosilane Grafting in Supercritical Carbon Dioxide towards Antibiofilm Properties

    No full text
    The study explores the grafting of cellulose acetate microfiltration membranes with an aminosilane to attain antibiofilm properties. The grafting reaction was performed in the supercritical carbon dioxide used as a transport and reaction medium. The FTIR analyses and dissolution tests confirmed the covalent bonding between the aminosilane and polymer. The membranes’ microstructure was investigated using a dual-beam SEM and ion microscopy, and no adverse effects of the processing were found. The modified membranes showed a more hydrophilic nature and larger water permeate flow rate than the neat cellulose acetate membranes. The tests in a cross-filtration unit showed that modified membranes were considerably less blocked after a week of exposure to Staphylococcus aureus and Escherichia coli than the original ones. Microbiological investigations revealed strong antibiofilm properties of the grafted membranes in experiments with Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, and Salmonella Enteritidis

    Genetic Profiling and Comparison of Human and Animal Methicillin-Resistant Staphylococcus aureus (MRSA) Isolates from Serbia

    Get PDF
    The aim of this study was to characterize a collection of methicillin-resistant Staphylococcus aureus (MRSA) isolates of human and animal origin from Serbia. In total, 36 MRSA isolates—30 obtained from humans and six from companion animals—were investigated by PCR for the presence of antibiotic and biocide resistance determinants and virulence genes (PVL—Panton–Valentine leukocidin, ETs—exfoliative toxins, TSST—toxic shock syndrome toxin, SEs—staphylococcal enterotoxins, and MSCRAMMs—microbial surface components recognizing adhesive matrix molecules and biofilm). Isolates were analyzed by staphylococcal cassette chromosome mec (SCCmec), spa, and dru typing, as well as by multiple locus variable number of tandem repeat analyses (MLVA), multilocus sequence typing (MLST), and subsequently, eBURST. The majority of human MRSA isolates were resistant to gentamicin, erythromycin, clindamycin, and ciprofloxacin. Different antibiotic resistance genes were detected: aac-aphD, ant(6′)-Ia, erm(A), erm(B), erm(C), tet(K), tet(M), fexA, and catpC221. All isolates were susceptible to teicoplanin and linezolid. SCCmec type III was prevalent in human isolates, while SCCmec elements in animals were mostly nontypeable. t037 was the predominant spa type in human and t242 in animal MRSA isolates. The prevalent dru type was dt11c in human and dt10a in animal MRSA isolates. MRSA isolates exhibited 27 different MLVA types. ST239 was predominant in human, while ST5 was prevalent in canine MRSA isolates. PVL was found in two, while tsst-1 was detected in three human isolates. Human-associated clones belonging to ST5, ST45, and ST239 MRSA clones were discovered in companion animals, which suggests anthropozoonotic transmission

    The Pheno- and Genotypic Characterization of Porcine Escherichia coli Isolates

    No full text
    Escherichia (E.) coli is the main causative pathogen of neonatal and post-weaning diarrhea and edema disease in swine production. There is a significant health concern due to an increasing number of human infections associated with food and/or environmental-borne pathogenic and multidrug-resistant E. coli worldwide. Monitoring the presence of pathogenic and antimicrobial-resistant E. coli isolates is essential for sustainable disease management in livestock and human medicine. A total of 102 E. coli isolates of diseased pigs were characterized by antimicrobial and biocide susceptibility testing. Antimicrobial resistance genes, including mobile colistin resistance genes, were analyzed by PCR and DNA sequencing. The quinolone resistance-determining regions of gyrA and parC in ciprofloxacin-resistant isolates were analyzed. Clonal relatedness was investigated by two-locus sequence typing (CH clonotyping). Phylotyping was performed by the Clermont multiplex PCR method. Virulence determinants were analyzed by customized DNA-based microarray technology developed in this study for fast and economic molecular multiplex typing. Thirty-five isolates were selected for whole-genome sequence-based analysis. Most isolates were resistant to ampicillin and tetracycline. Twenty-one isolates displayed an ESBL phenotype and one isolate an AmpC β-lactamase-producing phenotype. Three isolates had elevated colistin minimal inhibitory concentrations and carried the mcr-1 gene. Thirty-seven isolates displayed a multi-drug resistance phenotype. The most predominant β-lactamase gene classes were blaTEM-1 (56%) and blaCTX-M-1 (13.71%). Mutations in QRDR were observed in 14 ciprofloxacin-resistant isolates. CH clonotyping divided all isolates into 51 CH clonotypes. The majority of isolates belonged to phylogroup A. Sixty-four isolates could be assigned to defined pathotypes wherefrom UPEC was predominant. WGS revealed that the most predominant sequence type was ST100, followed by ST10. ST131 was detected twice in our analysis. This study highlights the importance of monitoring antimicrobial resistance and virulence properties of porcine E. coli isolates. This can be achieved by applying reliable, fast, economic and easy to perform technologies such as DNA-based microarray typing. The presence of high-risk pathogenic multi-drug resistant zoonotic clones, as well as those that are resistant to critically important antibiotics for humans, can pose a risk to public health. Improved protocols may be developed in swine farms for preventing infections, as well as the maintenance and distribution of the causative isolates

    Presence of β-Lactamase-producing Enterobacterales and Salmonella Isolates in Marine Mammals

    Get PDF
    Marine mammals have been described as sentinels of the health of marine ecosystems. Therefore, the aim of this study was to investigate (i) the presence of extended-spectrum β-lactamase (ESBL)- and AmpC-producing Enterobacterales, which comprise several bacterial families important to the healthcare sector, as well as (ii) the presence of Salmonella in these coastal animals. The antimicrobial resistance pheno- and genotypes, as well as biocide susceptibility of Enterobacterales isolated from stranded marine mammals, were determined prior to their rehabilitation. All E. coli isolates (n = 27) were screened for virulence genes via DNA-based microarray, and twelve selected E. coli isolates were analyzed by whole-genome sequencing. Seventy-one percent of the Enterobacterales isolates exhibited a multidrug-resistant (MDR) pheno- and genotype. The gene blaCMY (n = 51) was the predominant β-lactamase gene. In addition, blaTEM-1 (n = 38), blaSHV-33 (n = 8), blaCTX-M-15 (n = 7), blaOXA-1 (n = 7), blaSHV-11 (n = 3), and blaDHA-1 (n = 2) were detected. The most prevalent non-β-lactamase genes were sul2 (n = 38), strA (n = 34), strB (n = 34), and tet(A) (n = 34). Escherichia coli isolates belonging to the pandemic sequence types (STs) ST38, ST167, and ST648 were identified. Among Salmonella isolates (n = 18), S. Havana was the most prevalent serotype. The present study revealed a high prevalence of MDR bacteria and the presence of pandemic high-risk clones, both of which are indicators of anthropogenic antimicrobial pollution, in marine mammals
    corecore