173 research outputs found

    On the correlation of elemental abundances with kinematics among galactic disk stars

    Full text link
    We have performed the detailed analysis of 174 high-resolution spectra of FGK dwarfs obtained with the ELODIE echelle spectrograph at the Observatoire de Haute-Provence. Abundances of Fe, Si and Ni have been determined from equivalent widths under LTE approximation, whereas abundances of Mg have been determined under NLTE approximation using equivalent widths of 4 lines and profiles of 5 lines. Spatial velocities with an accuracy better than 1 km/s, as well as orbits, have been computed for all stars. They have been used to define 2 subsamples kinematically representative of the thin disk and the thick disk in order to highlight their respective properties. A transition occurs at [Fe/H]=-0.3. Stars more metal-rich than this value have a flat distribution with Zmax<1 kpc and sigma_W<20 km/s, and a narrow distribution of [alpha/Fe]. There exist stars in this metallicity regime which cannot belong to the thin disk because of their excentric orbits, neither to the thick disk because of their low scale height. Several thin disk stars are identified down to [Fe/H]=-0.80. Their Mg enrichment is lower than thick disk stars with the same metallicity. We confirm from a larger sample the results of Feltzing et al (2003) and Bensby et al (2003) showing a decrease of [alpha/Fe] with [Fe/H] in the thick disk interpreted as the signature of the SNIa which have progressively enriched the ISM with iron. However our data suggest that the star formation in the thick disk stopped when the enrichment was [Fe/H]=-0.30, [Mg/Fe]=+0.20, [Si/Fe]=+0.17. A vertical gradient in [alpha/Fe] may exist in the thick disk but should be confirmed with a larger sample. Finally we have identified 2 new candidates of the HR1614 moving group.Comment: Accepted in A&A, 16 pages, 14 figure

    Superflare G and K Stars and the Lithium abundance

    Full text link
    We analyzed here the connection of superflares and the lithium abundance in G and K stars based on Li abundance determinations conducted with the echelle spectra of a full set of 280 stars obtained with the ELODIE spectrograph. For high-active stars we show a definite correlation between log⁡A(Li)\log A(Li) and the chromosphere activity. We show that sets of stars with high Li abundance and having superflares possess common properties. It relates, firstly, to stars with activity saturation. We consider the X-ray data for G, K, and M stars separately, and show that transition from a saturation mode to solar-type activity takes place at values of rotation periods 1.1, 3.3, and 7.2 days for G2, K4 and M3 spectral types, respectively. We discuss bimodal distribution of a number of G and K main-sequence stars versus an axial rotation and location of superflare stars with respect to other Kepler stars. We conclude that superflare G and K stars are mainly fast rotating young objects, but some of them belong to stars with solar-type activity. At the same time, we found a group of G stars with high Li content (log⁡A(Li)=1.5−3)(\log A(Li) = 1.5 - 3), but being slower rotators with rotation periods > 10 days, which are characterized by low chromospheric activity. This agrees with a large spread in Li abundances in superflare stars. A mechanism leading to this effect is discussed.Comment: 6 pages, 8 figures. The 19th Cambridge Workshop on Cool Stars, Stellar Systems, and the Su

    Barium and Yttrium abundance in intermediate-age and old open clusters

    Full text link
    Barium is a neutron capture element, that, in open clusters, is frequently over-abundant with respect to the Iron. A clear explanation for this is still missing. Additionally, its gradient across the Galactic disk is poorly constrained. We measure the abundance of yttrium and barium using the synthetic spectrum method from UVES high-resolution spectra of eight distant open clusters, namely Ruprecht 4, Ruprecht 7, Berkeley 25, Berkeley 73, Berkeley 75, NGC 6192, NGC 6404, and NGC 6583. The barium abundance was estimated using NLTE approximation. We confirm that Barium is indeed over-abundant in most clusters, especially young clusters. Finally, we investigated the trend of yttrium and barium abundances as a function of distance in the Galaxy and ages. Several scenarios for the barium over-abundance are then discussed.Comment: 9 pages, 10 figure

    On the subject of the Ba overabundance in the open clusters stars

    Get PDF
    For eight distant open clusters, namely Ruprecht 4, Ruprecht 7, Berkeley 25, Berkeley 73, Berkeley 75, NGC 6192, NGC 6404, and NGC 6583, we determined the yttrium and barium abundances using the UVES, VLT spectra (ESO, Chile). The stars of one young cluster (Ruprecht 7) demonstrate significant barium overabundance( 3c0.55 dex) that can not be due to the determination error. We have considered the Ba abundance determination errors due to LTE approach, saturation of the lines, synthetic and observed barium line fitting, and the causes of the Ba overabundance associated with the Galactic disc enrichment or the origin of open clusters. Possible explanation for this overabundance can be the origin of n-capture elements enrichment of the clusters (galactic or extragalactic) or additional sources of the Ba production

    The NLTE Barium Abundance in Dwarf Stars in the Metallicity Range of -1 < [Fe/H] < +0.3

    Full text link
    We present the results of determination of the barium abundance considering the non-LTE (NLTE) effects in 172 dwarf stars in the metallicity range of -1< [Fe/H] <+0.3, assigned to different Galactic substructures by kinematic criteria. We used a model of the Ba atom with 31 levels of Ba I and 101 levels of Ba II. The atmosphere models for the investigated stars were computed using the ATLAS9 code modified by new opacity distribution functions. The NLTE profiles of the unblended Ba II (4554 A, 5853 A, 6496 A) were computed and then compared to those observed. The line 6141 A was also used, but with an allowance for its correlation with the iron line. The average barium abundances in the thin and thick discs are 0.01 +/- 0.08 and -0.03 +/- 0.07, respectively. The comparison to the calculations of the Galactic chemical evolution by Serminato et al. (2009) was conducted. The trend obtained for the Ba abundance versus [Fe/H] suggests a complex barium production process in the thin and thick discs

    Mn abundances in the stars of the Galactic disc with metallicities −1.0 < [Fe/H] < 0.3

    Get PDF
    In this work, we present and discuss the observations of the Mn abundances for 247 FGK dwarfs, located in the Galactic disc with metallicity −1 < [Fe/H] < +0.3. The observed stars belong to the substructures of the Galaxy thick and thin disks, and to the Hercules stream. The observations were conducted using the 1.93m telescope at Observatoire de Haute-Provence (OHP, France) equipped with the echelle-type spectrographs ELODIE and SOPHIE. The abundances were derived under the LTE approximation, with an average error for the [Mn/Fe] ratio of 0.10 dex. For most of the stars in the sample, Mn abundances are not available in the literature. We obtain an evolution of [Mn/Fe] ratio with the metallicity [Fe/H] consistent with previous data compilations. In particular, within the metallicity range covered by our stellar sample, the [Mn/Fe] ratio is increasing with the increase of metallicity. This due to the contribution to the Galactic chemical evolution of Mn and Fe from thermonuclear supernovae. We confirm the baseline scenario where most of the Mn in the Galactic disc and in the Sun is made by thermonuclear supernovae. In particular, the effective contribution from core-collapse supernovae to the Mn in the Solar system is about 10-20 per cent. However, present uncertainties affecting the production of Mn and Fe in thermonuclear supernovae are limiting the constraining power of the observed [Mn/Fe] trend in the Galactic discs on, e.g. the frequency of different thermonuclear supernovae populations. The different production of these two elements in different types of thermonuclear supernovae needs to be disentangled by the dependence of their relative production on the metallicity of the supernova progenito

    Abundances of Cu and Zn in metal-poor stars: clues for Galaxy evolution

    Get PDF
    We present new observations of copper and zinc abundances in 90 metal-poor stars, belonging to the metallicity range -3< [Fe/H] < -0.5. The present study is based on high resolution spectroscopic measurements collected at the Haute Provence Observatoire (R= 42000, S/N > 100). The trend of Cu and Zn abundances as a function of the metallicity [Fe/H] is discussed and compared to that of other heavy elements beyond iron. We also estimate spatial velocities and galactic orbital parameters for our target stars in order to disentangle the population of disk stars from that of halo stars using kinematic criteria. In the absence of a firm a priori knowledge of the nucleosynthesis mechanisms controlling Cu and Zn production, and of the relative stellar sites, we derive constraints on these last from the trend of the observed ratios [Cu/Fe] and [Zn/Fe] throughout the history of the Galaxy, as well as from a few well established properties of basic nucleosynthesis processes in stars. We thus confirm that the production of Cu and Zn requires a number of different sources (neutron captures in massive stars, s-processing in low and intermediate mass stars, explosive nucleosynthesis in various supernova types). We also attempt a ranking of the relative roles played by different production mechanisms, and verify these hints through a simple estimate of the galactic enrichment in Cu and Zn. In agreement with suggestions presented earlier, we find evidence that Type Ia Supernovae must play a relevant role, especially for the production of Cu.Comment: Accepted for A&A, 27 pages, 14 figure

    Spectroscopy of high proper motion stars in the ground--based UV

    Full text link
    Based on high quality spectral data (spectral resolution R>60000) within the wavelength range of 3550-5000 AA we determined main parameters (effective temperature, surface gravity, microturbulent velocity, and chemical element abundances including heavy metals from Sr to Dy) for 14 metal-deficient G-K stars with large proper motions. The stars we studied have a wide range of metallicity: [Fe/H]=-0.3 \div -2.9. Abundances of Mg, Al, Sr and Ba were calculated with non-LTE line-formation effects accounted for. Abundances both of the radioactive element Th and r-process element Eu were determined using synthetic spectrum calculations. We selected stars that belong to different galactic populations according to the kinematical criterion and parameters determined by us. We found that the studied stars with large proper motions refer to different components of the Galaxy: thin, thick disks and halo. The chemical composition of the star BD+80 245 located far from the galactic plane agrees with its belonging to the accreted halo. For the giant HD115444 we obtained [Fe/H]=-2.91, underabundance of Mn, overabundance of heavy metals from Ba to Dy, and, especially high excess of the r-process element Europium: [Eu/Fe]=+1.26. Contrary to its chemical composition typical for halo stars, HD115444 belongs to the disc population according to its kinematic parameters.Comment: 16 pages, 4 figures, 5 tables, "UV Universe-2010 (2nd NUVA Symposium) conference

    The Galactic thick and thin disks: differences in evolution

    Full text link
    Recent observations demonstrate that the thin and thick disks of the Galaxy have different chemical abundance trends and evolution timescales. The relative abundances of α\alpha-elements in the thick Galactic disk are increased relative to the thin disk. Our goal is to investigate the cause of such differences in thick and thin disk abundances. We investigate the chemical evolution of the Galactic disk in the framework of the open two-zone model with gas inflow. The Galactic abundance trends for α\alpha-elements (Mg, Si, O) and Fe are predicted for the thin and thick Galactic disks. The star formation histories of the thin and thick disks must have been different and the gas infall must have been more intense during the thick disk evolution that the thin disk evolution.Comment: 9 pages, 10 figures, A&A accepte

    Enrichment of the Galactic disc with neutron-capture elements: Gd, Dy, and Th

    Get PDF
    The study of the origin of heavy elements is one of the main goals of nuclear astrophysics. In this paper, we present new observational data for the heavy r-process elements gadolinium (Gd, Z= 64), dysprosium (Dy, Z= 66), and thorium (Th, Z= 90) in a sample of 276 Galactic disc stars (-1.0 < [Fe/H] < + 0.3). The stellar spectra have a high resolution of 42 000 and 75 000, and the signal-to-noise ratio higher than 100. The LTE abundances of Gd, Dy, and Th have been determined by comparing the observed and synthetic spectra for three Gd lines (149 stars), four Dy lines (152 stars), and the Th line at 4019.13 angstrom (170 stars). For about 70 per cent of the stars in our sample, Gd and Dy are measured for the first time, and Th for 95 per cent of the stars. Typical errors vary from 0.07 to 0.16 dex. This paper provides the first extended set of Th observations in the Milky Way disc. Together with europium (Eu, Z= 63) data from our previous studies, we have compared these new observations with nucleosynthesis predictions and Galactic Chemical Evolution simulations. We confirm that [Gd/Fe] and [Dy/Fe] show the same behaviour of Eu. We study with GCE simulations the evolution of [Th/Fe] in comparison with [Eu/Fe], showing that unlike Eu, either the Th production is metallicity dependent in case of a unique source of the r-process in the Galaxy, or the frequency of the Th-rich r-process source is decreasing with the increase in [Fe/H]
    • 

    corecore