110 research outputs found

    O_2 solubility in Martian near-surface environments and implications for aerobic life

    Get PDF
    Due to the scarcity of O_2 in the modern Martian atmosphere, Mars has been assumed to be incapable of producing environments with sufficiently large concentrations of O_2 to support aerobic respiration. Here, we present a thermodynamic framework for the solubility of O2 in brines under Martian near-surface conditions. We find that modern Mars can support liquid environments with dissolved O_2 values ranging from ~2.5 × 10^(−6) mol m^(−3) to 2 mol m^(−3) across the planet, with particularly high concentrations in polar regions because of lower temperatures at higher latitudes promoting O_2 entry into brines. General circulation model simulations show that O_2 concentrations in near-surface environments vary both spatially and with time—the latter associated with secular changes in obliquity, or axial tilt. Even at the limits of the uncertainties, our findings suggest that there can be near-surface environments on Mars with sufficient O_2 available for aerobic microbes to breathe. Our findings may help to explain the formation of highly oxidized phases in Martian rocks observed with Mars rovers, and imply that opportunities for aerobic life may exist on modern Mars and on other planetary bodies with sources of O_2 independent of photosynthesis

    O_2 solubility in Martian near-surface environments and implications for aerobic life

    Get PDF
    Due to the scarcity of O_2 in the modern Martian atmosphere, Mars has been assumed to be incapable of producing environments with sufficiently large concentrations of O_2 to support aerobic respiration. Here, we present a thermodynamic framework for the solubility of O2 in brines under Martian near-surface conditions. We find that modern Mars can support liquid environments with dissolved O_2 values ranging from ~2.5 × 10^(−6) mol m^(−3) to 2 mol m^(−3) across the planet, with particularly high concentrations in polar regions because of lower temperatures at higher latitudes promoting O_2 entry into brines. General circulation model simulations show that O_2 concentrations in near-surface environments vary both spatially and with time—the latter associated with secular changes in obliquity, or axial tilt. Even at the limits of the uncertainties, our findings suggest that there can be near-surface environments on Mars with sufficient O_2 available for aerobic microbes to breathe. Our findings may help to explain the formation of highly oxidized phases in Martian rocks observed with Mars rovers, and imply that opportunities for aerobic life may exist on modern Mars and on other planetary bodies with sources of O_2 independent of photosynthesis

    The habitability of super-Earths in Gliese 581

    Full text link
    Aims: The planetary system around the M star Gliese 581 consists of a hot Neptune (Gl 581b) and two super-Earths (Gl 581c and Gl 581d). The habitability of this system with respect to the super-Earths is investigated following a concept that studies the long-term possibility of photosynthetic biomass production on a dynamically active planet. Methods: A thermal evolution model for a super-Earth is used to calculate the sources and sinks of atmospheric carbon dioxide. The habitable zone is determined by the limits of biological productivity on the planetary surface. Models with different ratios of land / ocean coverage are investigated. Results: The super-Earth Gl 581c is clearly outside the habitable zone, since it is too close to the star. In contrast, Gl 581d is a tidally locked habitable super-Earth near the outer edge of the habitable zone. Despite the adverse conditions on this planet, at least some primitive forms of life may be able to exist on its surface.Therefore, Gl 581d is an interesting target for the planned TPF/Darwin missions to search for biomarkers in planetary atmospheres.Comment: 6 pages, 4 figures, 2 table

    Habitable Zones and UV Habitable Zones around Host Stars

    Full text link
    Ultraviolet radiation is a double-edged sword to life. If it is too strong, the terrestrial biological systems will be damaged. And if it is too weak, the synthesis of many biochemical compounds can not go along. We try to obtain the continuous ultraviolet habitable zones, and compare the ultraviolet habitable zones with the habitable zones of host stars. Using the boundary ultraviolet radiation of ultraviolet habitable zone, we calculate the ultraviolet habitable zones of host stars with masses from 0.08 to 4.00 \mo. For the host stars with effective temperatures lower than 4,600 K, the ultraviolet habitable zones are closer than the habitable zones. For the host stars with effective temperatures higher than 7,137 K, the ultraviolet habitable zones are farther than the habitable zones. For hot subdwarf as a host star, the distance of the ultraviolet habitable zone is about ten times more than that of the habitable zone, which is not suitable for life existence.Comment: 5 pages, 3 figure

    Hydrogen and chlorine abundances in the Kimberley formation of Gale crater measured by the DAN instrument on board the Mars Science Laboratory Curiosity rover

    Get PDF
    The Dynamic Albedo of Neutron (DAN) instrument on board the Mars Science Laboratory Curiosity rover acquired a series of measurements as part of an observational campaign of the Kimberley area in Gale crater. These observations were planned to assess the variability of bulk hydrogen and neutron‐absorbing elements, characterized as chlorine‐equivalent concentration, in the geologic members of the Kimberley formation and in surface materials exposed throughout the area. During the traverse of the Kimberley area, Curiosity drove primarily over the “Smooth Hummocky” unit, a unit composed primarily of sand and loose rocks, with occasional stops at bedrock of the Kimberley formation. During the Kimberley campaign, DAN detected ranges of water equivalent hydrogen (WEH) and chlorine‐equivalent concentrations of 1.5–2.5 wt % and 0.6–2 wt %, respectively. Results show that as the traverse progressed, DAN observed an overall decrease in both WEH and chlorine‐equivalent concentration measured over the sand and loose rocks of the Smooth Hummocky unit. DAN measurements of WEH and chlorine‐equivalent concentrations in the well‐exposed sedimentary bedrock of the Kimberley formation show fluctuations with stratigraphic position. The Kimberley campaign also provided an opportunity to compare measurements from DAN with those from the Sample Analysis at Mars (SAM) and the Alpha‐Particle X‐ray Spectrometer (APXS) instruments. DAN measurements obtained near the Windjana drill location show a WEH concentration of ~1.5 wt %, consistent with the concentration of low‐temperature absorbed water measured by SAM for the Windjana drill sample. A comparison between DAN chlorine‐equivalent concentrations measured throughout the Kimberley area and APXS observations of corresponding local surface targets and drill fines shows general agreement between the two instruments

    The HARPS search for southern extra-solar planets XXXV. Super-Earths around the M-dwarf neighbors Gl433 and Gl667C

    Full text link
    M dwarfs have been found to often have super-Earth planets with short orbital periods. Such stars are thus preferential targets in searches for rocky or ocean planets in the solar neighbourhood. In a recent paper (Bonfils et al. 2011), we announced the discovery of respectively 1 and 2 low mass planets around the M1.5V stars Gl433 and Gl667C. We found those planets with the HARPS spectrograph on the ESO~3.6-m telescope at La Silla Observatory, from observations obtained during the Guaranteed Time Observing program of that instrument. We have obtained additional HARPS observations of those two stars, for a total of respectively 67 and 179 Radial Velocity measurements for Gl433 and Gl667C, and present here an orbital analysis of those extended data sets and our main conclusion about both planetary systems. One of the three planets, Gl667Cc, has a mass of only M2.sin(i)~4.25 M_earth and orbits in the central habitable zone of its host star. It receives just 10% less stellar energy from Gl667C than the Earth receives from the Sun. However planet evolution in habitable zone can be very different if the host star is a M dwarf or a solar-like star, without necessarily questioning the presence of water. The two other planets, Gl433b and Gl667Cb, both have M2.sin(i) of ~5.5 M_earth and periods of ~7 days. The Radial Velocity measurements of both stars contain longer time scale signals, which we fit as longer period Keplerians. For Gl433 that signal probably originates in a Magnetic Cycle, while a longer time span will be needed to conclude for Gl667C. The metallicity of Gl433 is close to solar, while Gl667C is metal poor with [Fe/H] ~ -0.6. This reinforces the recent conclusion that the occurence of Super-Earth planets does not strongly correlate with stellar metallicity.Comment: 14 pages, 8 figures, submitted to A&

    Hydrogen and chlorine abundances in the Kimberley formation of Gale crater measured by the DAN instrument on board the Mars Science Laboratory Curiosity rover

    Get PDF
    The Dynamic Albedo of Neutron (DAN) instrument on board the Mars Science Laboratory Curiosity rover acquired a series of measurements as part of an observational campaign of the Kimberley area in Gale crater. These observations were planned to assess the variability of bulk hydrogen and neutron‐absorbing elements, characterized as chlorine‐equivalent concentration, in the geologic members of the Kimberley formation and in surface materials exposed throughout the area. During the traverse of the Kimberley area, Curiosity drove primarily over the “Smooth Hummocky” unit, a unit composed primarily of sand and loose rocks, with occasional stops at bedrock of the Kimberley formation. During the Kimberley campaign, DAN detected ranges of water equivalent hydrogen (WEH) and chlorine‐equivalent concentrations of 1.5–2.5 wt % and 0.6–2 wt %, respectively. Results show that as the traverse progressed, DAN observed an overall decrease in both WEH and chlorine‐equivalent concentration measured over the sand and loose rocks of the Smooth Hummocky unit. DAN measurements of WEH and chlorine‐equivalent concentrations in the well‐exposed sedimentary bedrock of the Kimberley formation show fluctuations with stratigraphic position. The Kimberley campaign also provided an opportunity to compare measurements from DAN with those from the Sample Analysis at Mars (SAM) and the Alpha‐Particle X‐ray Spectrometer (APXS) instruments. DAN measurements obtained near the Windjana drill location show a WEH concentration of ~1.5 wt %, consistent with the concentration of low‐temperature absorbed water measured by SAM for the Windjana drill sample. A comparison between DAN chlorine‐equivalent concentrations measured throughout the Kimberley area and APXS observations of corresponding local surface targets and drill fines shows general agreement between the two instruments

    Mars Science Laboratory relative humidity observations : Initial results

    Get PDF
    The authors would like to express their gratitude to the MSL and REMS instrument teams in making this wonderful Mars mission come true. Ari‐Matti Harri and Hannu Savijarvi are thankful for the Finnish Academy grants 132825 and 131723.Peer reviewedPublisher PD

    Secular Climate Change on Mars: An Update Using MSL Pressure Data

    Get PDF
    The South Polar Residual Cap (SPRC) on Mars is an icy reservoir of CO2. If all the CO2 trapped in the SPRC were released to the atmosphere the mean annual global surface pressure would rise by approx. 20 Pa. Repeated MOC and HiRISE imaging of scarp retreat rates within the SPRC have led to the suggestion that the SPRC is losing mass. Estimates for the loss rate vary between 0.5 Pa per Mars Deacde to 13 Pa per Mars Decade. Assuming 80% of this loss goes directly to the atmosphere, and that the loss is monotonic, the global annual mean surface pressure should have increased between approx. 1-20 Pa since the Viking mission (19 Mars years ago)

    Habitable Zones in the Universe

    Full text link
    Habitability varies dramatically with location and time in the universe. This was recognized centuries ago, but it was only in the last few decades that astronomers began to systematize the study of habitability. The introduction of the concept of the habitable zone was key to progress in this area. The habitable zone concept was first applied to the space around a star, now called the Circumstellar Habitable Zone. Recently, other, vastly broader, habitable zones have been proposed. We review the historical development of the concept of habitable zones and the present state of the research. We also suggest ways to make progress on each of the habitable zones and to unify them into a single concept encompassing the entire universe.Comment: 71 pages, 3 figures, 1 table; to be published in Origins of Life and Evolution of Biospheres; table slightly revise
    corecore