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In this Supplementary Information section, we derive all equations used in the main 10 

article and give an extended discussion of our Methods. It is organized as follows. First, 11 

we derive all needed equations. We then provide additional evidence for the validity of our 12 

solubility and climate models. Following this, we explain why the averaging method we 13 

employ for computing O2 solubilities as a function of the annually averaged local values 14 

for surface temperature and pressure is practical, and underestimates O2 solubilities and the 15 

difference between minimum and maximum values. Last, we elaborate on the implications 16 

for habitability and potential extant life on Mars, and on how pressure and temperature 17 

control solubility, and possibly oxidation, gradients across the Martian surface and shallow 18 

subsurface (from here on termed “near-surface”). 19 

 20 

1. Detailed derivation of all necessary equations 21 

To compute the solubility of O2 in pure water [𝑂#]%
&',)(𝑇, 𝑃) in mol kg-1, we start with 22 

the equilibrium constant, 𝑘(𝑇, 𝑃),  for a given total atmospheric pressure, 𝑃,  and 23 
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temperature, 𝑇, which is defined for an activity coefficient of dissolved O2,	𝛼 , and the 24 

fugacity coefficient, 𝜑, of O2 in the gas phase1-4, with 𝑉𝑀𝑅56	being the volume mixing ratio 25 

of O2 in the atmosphere and the partial pressure of O2 being 𝑝56 = 𝑃 ∙ 𝑉𝑀𝑅56  26 

𝑘(𝑇, 𝑃) =
𝛼 ∙ [𝑂#]:

&',)(𝑇, 𝑃)
𝜑 ∙ 𝑉𝑀𝑅56

.																																																																																																						(8) 27 

For Mars, we assume this value to be constant and equal to 𝑉𝑀𝑅56 = 0.001455. We 28 

discuss diurnal, seasonal, obliquity-driven, and atmospheric collapse-related changes in the 29 

O2 mixing ratio in Section 2.2.5 and show that it does not affect our results. Both the 30 

activity coefficient of dissolved O2 as well as the fugacity of O2 in the gas phase are close 31 

to unity because of the small concentrations of dissolved O2 and the small O2 partial 32 

pressures that are relevant to our study (independent of temperature, for [𝑂#]%
&',) → 0 and 33 

𝑃 → 0, the definitions for activity coefficient and fugacity demand that 𝛼 → 1 and 𝜑 → 1, 34 

respectively1). Therefore, Equation 8 simplifies to  35 

𝑘(𝑇, 𝑃) =
[𝑂#]%

&',)(𝑇, 𝑃)
𝑉𝑀𝑅56

.																																																																																																												(9) 36 

To compute the solubility [𝑂#]%
&',)(𝑇, 𝑃) , we need to compute the equilibrium 37 

constant, 𝑘(𝑇, 𝑃),  which is defined by the change in molar Gibbs potential 38 

∆𝐺∗(𝑇, 𝑃)		between the dissolved and gaseous phases1-4  39 

𝑘(𝑇, 𝑃) = 𝑒𝑥𝑝H
−∆𝐺∗(𝑇, 𝑃)	

𝑅𝑇 J.																																																																																																(10) 40 

𝑅 = 8.3144598	𝐽	𝑚𝑜𝑙PQ	𝐾PQ is the universal gas constant. We compute the molar 41 

Gibbs potential through the chemical potential 𝜇(𝑇, 𝑃) for both the dissolved (𝜇&',),56) 42 

and gaseous (𝜇T,56) O2 phases  43 
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𝐺∗(𝑇, 𝑃) = UVW
VX
Y
Z,[

= 𝜇(𝑇, 𝑃),																																																																																																	(11)  44 

and, hence, ∆𝐺∗(𝑇, 𝑃) = 𝜇&',),56(𝑇, 𝑃) − 𝜇T,56(𝑇, 𝑃). Note that the chemical potential is 45 

a function of both temperature, 𝑇, and pressure, 𝑃.  In order to compute the solubility of O2 46 

in water, we need to know the chemical potential of O2 in the gaseous and dissolved 47 

aqueous phases as a function of temperature and pressure.  48 

We refer to Equations 10-11, where the chemical potential is defined through the 49 

molar Gibbs potential, in order to compute 𝜇(𝑇, 𝑃)  in relation to a reference 50 

state, 	𝜇\𝑇]^_, 𝑃]^_`, by calculating the differential 𝑑𝜇(𝑇, 𝑃)  from \𝑇]^_, 𝑃]^_`  to (𝑇, 𝑃) 51 

using the entropy, 𝑆, the internal energy, U, and the molar volume, V, for both phases 52 

𝑑𝜇(𝑇, 𝑃) = 𝑑𝐺∗(𝑇, 𝑃) = 𝑑(𝑈 + 𝑃𝑉 − 𝑇𝑆) = 𝑑𝑈 + 𝑉𝑑𝑃 + 𝑃𝑑𝑉 − 𝑇𝑑𝑆 − 𝑆𝑑𝑇.									(12)  53 

With the definition of the internal heat 54 

𝑑𝑈 ≡ 	𝛿𝑄 − 𝑃𝑑𝑉,																																																																																																																									(13)   55 

and the definition for the entropy 56 

𝑑𝑆 ≡ 	
𝛿𝑄
𝑇 ,																																																																																																																																							(14) 57 

we obtain 58 

𝑑𝜇(𝑇, 𝑃) = 	𝛿𝑄 − 𝑃𝑑𝑉 + 𝑉𝑑𝑃 + 𝑃𝑑𝑉 − 𝑇𝑑𝑆 − 𝑆𝑑𝑇 = 𝑉𝑑𝑃 − 𝑆𝑑𝑇.																													(15) 59 

Therefore, we can rewrite the chemical potential as 60 

𝜇(𝑇, 𝑃) = 𝜇\𝑇]^_, 𝑃]^_` + i 𝑉𝑑𝑃′
[

[klm

	− i 𝑆(𝑇n)𝑑𝑇n
Z

Zklm

.																																																						(16) 61 

The entropy, 𝑆, is a function of temperature and can be related to the specific heat at 62 

constant pressure, 𝐶[(𝑇), which is more useful (experimentally directly measurable) than 63 

the entropy itself, with Equation 14 and 𝛿𝑄|[ = 𝐶[𝑑𝑇 we get 64 
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𝑆(𝑇) = 𝑆\𝑇]^_` + i 𝑑𝑆
Z

Zklm

																																																																																																						 65 

										= 𝑆\𝑇]^_` + i
𝐶[(𝑇n)
𝑇n 𝑑𝑇n +

Z

Zklm

		𝐶[(𝑇) − 𝐶[(𝑇)rssstsssu
vw

 66 

										= 𝑆\𝑇]^_` − 𝐶[(𝑇) +
𝜕
𝜕𝑇

y𝑇 i
𝐶[(𝑇n)
𝑇n 𝑑𝑇n

Z

Zklm

z
rsssssstssssssu
∫

|}\Z~`
Z~ �Z~��

�klm
		|}(Z)

	.																																																								 (17) 67 

Therefore, we replace in Equation 16 the integral over the entropy and obtain in 68 

Equation 18 the chemical potential at temperature, 𝑇,	and reference pressure, 𝑃]^_, which 69 

corresponds to the temperature-dependent function in Equation 2 from our Methods 70 

𝜇�(𝑇) = 𝜇\𝑇, 𝑃]^_`																																																																																																																								(18) 71 

											= 𝜇�\𝑇]^_` − 𝑆\𝑇]^_` ∙ �𝑇 − 𝑇]^_� + ∫ 𝐶[(𝑇n)𝑑𝑇n
Z
Zklm

− 𝑇 ∫ |}\Z~`
Z~

𝑑𝑇nZ
Zklm

. 72 

To fully solve for the chemical potential, we need to consider effects by pressure, 73 

described by ∫ 𝑉𝑑𝑃′[
[klm

 in Equation 16. For the gas phase (hence, for 𝜇T,56(𝑇, 𝑃)), we 74 

assume an ideal gas with 𝑃𝑉 = 𝑅𝑇 (for one mol) and, hence, 75 

i 𝑉𝑑𝑃′
[

[klm

�

T

= 𝑅𝑇𝑙𝑛 H
𝑃
𝑃]^_

J.																																																																																																						(19) 76 

For the dissolved phase, we assume that the molar volume of dissolved O2, 𝑉&',56 ,		is 77 

smaller than that of water, 𝑉),	and, hence, we get 𝑉&',56 = 𝜆𝑉)  with 0 < 𝜆 < 1. Using this 78 

volume estimate with the standard molar volume for water at reference temperature and 79 

pressure of  𝑉)\𝑇]^_, 𝑃]^_` = 1.8 ∙ 10P�𝑚�𝑚𝑜𝑙PQ (water is approximately incompressible 80 
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for the pressures and temperatures at which we are interested), we find that ∫ 𝑉&',56𝑑𝑃′
[
[klm

 81 

is negligible and would, if included, only increase the solubility of O2 by about 0.1%. 82 

Therefore, from relationships in Equations 9-11, 16, 18-19, we obtain Equation 20 83 

[𝑂#]%
&',)(𝑇, 𝑃) =

𝑝56
𝑃]^_

𝑒𝑥𝑝H
𝜇�T,56(𝑇) − 𝜇�&',),56(𝑇)

𝑅𝑇 J,																																																							 (20) 84 

which corresponds to Equation 1 in our Methods Section (compare also with other 85 

sources1,3,4). Note that the pressure dependence derived here corresponds to Henry’s law. 86 

From here, to compute 	𝜇�T,56(𝑇) − 𝜇�&',),56(𝑇) , we need standard values at 87 

\𝑇]^_, 𝑃]^_` for the chemical potentials and entropy of gaseous and dissolved O2 and the 88 

specific heat of O2 in the gas phase, 𝐶[,56,T(𝑇), and dissolved in pure water, 𝐶[,56,&'(𝑇), as 89 

a function of temperature. Experiments6 confirm that 𝐶[,56,T(𝑇) = 𝐶[,56,T\𝑇]^_` ; all 90 

parameters at reference conditions can be found in Table S1.  91 

We examine the choice for the specific heat of dissolved O2 in pure water and the 92 

effects of salts on the solubility of O2 in the following section and associated subsections. 93 

 94 

2. Extended evidence for the validity of methods 95 

2.1. Solubility model 96 

In the next subsections, we discuss our solubility model in greater detail. 97 

 98 

2.1.1. Specific heat of dissolved O2 and solubility – tests and robustness of results 99 

Experiments show 	𝐶[,56,&'(𝑇)  increases slightly as temperature decreases from 373-100 

273 K, with no data available below this temperature range1,3. There is reason to expect that 101 

the trend of increasing heat capacity continues from 273 K down to ~225-235 K but 102 
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possibly also below this limit. Such a steep increase of 𝐶[,56,&'(𝑇) is justified by arguing 103 

that the behavior of the specific heat of water at cooler temperatures below ~ 300 K directly 104 

corresponds to the behavior of the specific heat capacity of dissolved O2. This assumption 105 

can be partially rationalized, as the smooth increase in the specific heat of pure water from 106 

300 K into the supercooled water domain down to ~225-235 K can be explained by stronger 107 

hydrogen bonds at lower temperature1, and, hence, a greater amount of heat being needed 108 

in order to increase the ambient temperature. This increase in hydrogen bonding for lower 109 

temperatures is expected to similarly affect the dissolved O2, which will be partially 110 

polarized due to the water dipoles, leading potentially to a similar behaviour of the specific 111 

heats of water and dissolved O2 below 273 K. However, thermodynamics demands that 112 

lim
Z→w	�

𝐶[ = 0 . Indeed, some theoretical predictions find that the specific heat of 113 

supercooled water could start to decrease again for T~225-235 K, where potentially a 114 

liquid-liquid phase transition could occur7-9. We emphasize that experiments to date also 115 

allow for the heat capacity to continue increasing into much cooler regions below 235 K.  116 

We use for our nominal best estimate (BE) the simplest assumption that 𝐶[,56,&'(𝑇) =117 

𝐶[,56,&'\𝑇]^_`, but we also test other reasonable forms of 𝐶[,56,&'(𝑇) (all show a similar 118 

result), and derive a thermodynamic worst case, which technically cannot be reached – 119 

assuming the validity of Equations 1-2 from our Methods Section. 120 

Assuming �	|},�6,��
	|},�	

~𝑐𝑜𝑛𝑠𝑡. � below 273 K (so that the specific heat of dissolved O2 121 

scales with the specific heat of water), and taking the predicted specific heat behavior7-9 of 122 

supercooled water – consisting of an initial power law increase below 273 K towards a 123 

critical temperature, Tcrit, of 225-235 K, below which the heat capacity exponentially decays 124 

towards 0 K, we find that at 140 K, O2 solubility values are within 20% of our best estimate 125 
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(BE). Therefore, if the specific heat of dissolved O2 behaves similar to the theoretical 126 

predictions for the specific heat of supercooled water, then our best estimate is an excellent 127 

prediction for the solubility of O2 below 273 K. 128 

Alternatively, we examine what happens if we assume that, instead, the specific heat 129 

of dissolved O2 in water behaves similar to the specific heat of a “normal fluid” that does 130 

not show anomalous behaviour like water, such as a very salty NaCl brine9. For NaCl-131 

brines9 and many other brines including perchlorates10, the specific heat is rather constant 132 

but does decay slowly with decreasing temperature. Assuming an unusually strong linear 133 

decrease of 𝐶[,56,&'(𝑇) by 50% from 293 to 140 K (a few factors to ~1 order of magnitude 134 

larger than generally found for very salty brines9,10), we obtain values for the solubility of 135 

O2 at 140 K that are ~3 times lower than our best estimate. Thus, we conclude that, for all 136 

reasonable forms of 𝐶[,56,&'(𝑇), the solubility values at 140 K are generally similar to the 137 

best estimate assuming a constant heat capacity for dissolved O2 in pure water. In the next 138 

section, we derive a thermodynamic lower bound that cannot be reached as our 139 

conservative worst-case scenario. 140 

 141 

2.1.2. Specific heat of dissolved O2 and thermodynamic worst case (WC) 142 

The solubility of O2 in mol m-3 in pure water or brine depends on the specific heat of 143 

dissolved O2, 𝐶[,56,&' , in the following way (see Equations 1 and 3 in Methods Section, and 144 

Equations 18 and 20 here in the SI) 145 

[𝑂#]&'\𝑇, 𝜁(𝑇)` = 𝐹(𝑇)𝑒𝑥𝑝 U�(Z)
�Z
Y,  146 

with 𝜁(𝑇) = −∫ 𝐶[(𝑇n)𝑑𝑇n
Z
Zklm

+ 𝑇 ∫ |}\Z~`
Z~

𝑑𝑇n	Z
Zklm

.																																																										 (21)  147 
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The function 	𝜁(𝑇)	 contains all the uncertainties introduced by the behavior of 148 

	𝐶[,56,&'	(𝑇),  whereas 𝐹(𝑇)	 depends only on well-constrained properties, and 149 

monotonically increases for lower temperatures. We develop a thermodynamic lower limit 150 

for	𝜁(𝑇), which gives a lower limit for the solubility of O2 in supercooled water. To achieve 151 

this, we need to assess the behaviour of 𝜁(𝑇). 152 

First, we show that 𝜁(𝑇Q) > 𝜁(𝑇#):	∀(𝑇Q < 𝑇#), so, independent of the temperature 153 

dependence of the heat capacity, solubilities monotonically increase for lower temperatures, 154 

with the minimum solubility curve for 𝑇 < 𝑇¡¢£ given by 155 

[𝑂#]&'\𝑇, 𝜁(𝑇)` > [𝑂#]&'(𝑇)¤¡¢£ = [𝑂#]&'(𝑇, 𝜁∗) with 𝜁∗(𝑇) = 𝜁(𝑇 = 𝑇¡¢£),										(22)    156 

where 𝑇¡¢£ is the lowest temperature above which we know 	𝐶[,56,&'	(𝑇) sufficiently 157 

well. The most conservative worst-case estimate assumes that 𝑇¡¢£ = 273	𝐾 because we 158 

have data on 	𝐶[,56,&'	(𝑇) above 273 K; we make this our conservative worst case that is 159 

used as the “WC” scenario in the main article.  160 

Equation 22 is derived in the following way: ∀𝑇:	𝑇 > 0, 𝐶[(𝑇) > 0, and 𝑇]^_ > 𝑇 we 161 

have 𝑇n > 𝑇	and therefore  Z
Zn
< 1. Hence, we can establish the following relationships 162 

¥𝑇 ∫ |}\Z~`
Z~

𝑑𝑇n	Z
Zklm

¥ < ¥∫ 𝐶[(𝑇n)𝑑𝑇n
Z
Zklm

¥																																																																										(23)  163 

∫ 𝐶[(𝑇n)𝑑𝑇n
Z
Zklm

< 0 and ∫ |}\Z~`
Zn

𝑑𝑇n < 0.																																																																						(24)	Z
Zklm

 164 

Therefore, we conclude that 165 

 𝜁(𝑇) = −∫ 𝐶[(𝑇n)𝑑𝑇n
Z
Zklm

+ 𝑇 ∫ |}\Z~`
Z~

𝑑𝑇n	Z
Zklm

> 0, ∀\𝑇, 𝐶[(𝑇)`.																																	(25)	  166 

Next, to 𝜁(𝑇)	 being a positive function, based on Equations 23-25, 𝜁(𝑇)	 also 167 

monotonically increases for lower T because: 168 
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𝜁(𝑇Q) = 𝜁(𝑇#)− i 𝐶[(𝑇n)𝑑𝑇n
Z¦

Z6

+ 𝑇Q i
𝐶[(𝑇n)
𝑇n 𝑑𝑇n	

Z¦

Z6

rsssssssssstssssssssssu
">0"	&¨	¨©ª)£	¢£	«'.#�

> 𝜁(𝑇#), ∀(𝑇Q < 𝑇#).																				(26) 169 

Finally, with Equation 26, we have a full proof for Equation 22. Our worst case (WC) 170 

assuming Equation 22 and 𝑇¡¢£ = 273	𝐾 provides the logic for a conservative lowermost 171 

bound on O2 solubility, and it is important to note that the true solution is likely to be much 172 

greater and closer to our best estimate (BE) scenario. This is because our WC solution 173 

indirectly implies that 	𝐶[,56,&'	(𝑇) = 0  already for 𝑇 < 𝑇¡¢£ = 273	𝐾  but 174 

thermodynamics teaches us that this limit of 	𝐶[,56,&'	(𝑇) = 0	can only occur at T = 0 K. 175 

Compare in Fig. S1 how our worst case is only slightly greater (20 % at 140 K) than a 176 

solubility curve assuming 	𝐶[,56,&'	(𝑇) = 0 for all temperatures. Please note that we could 177 

also reasonably choose 𝑇¡¢£ = 225	𝐾, where supercooled water is suspected to have a 178 

turning point for the specific heat to start declining for smaller temperatures9. In that case, 179 

our solution would follow from 298 K the BE scenario until 225 K instead to just 273 K 180 

and would assume 	𝐶[,56,&'	(𝑇) = 0	  for  𝑇 < 225	𝐾 . This would would lead to a 181 

significant additional increase in O2 solubility curve in comparison to our conservative 182 

worst case estimate with 𝑇¡¢£ = 273	𝐾 (see Fig. S1). Also, Section 2.1.1 describes in 183 

detail how other reasonable assumptions on 	𝐶[,56,&'	(𝑇)  below 273 K would lead to 184 

solubilities very close to BE. 185 

 186 

2.1.3. Derivation of Pitzer coefficients for perchlorates 187 

We use the experimental results11-13 on the O2 solubility in perchlorate brines containing 188 

the salts NaClO4, KClO4, RbClO4, and LiClO4 to derive the Pitzer interaction coefficients 189 
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for the O2-perchlorate ion interaction O2-ClO4, described by 𝜆56P|¬5®  in Equation 4 in our 190 

Methods Section. Generally, the temperature dependence of the Pitzer coefficients is 191 

negligible, but we examine this in the next section. The O2-cation interaction coefficients, 192 

𝜆56P¯ , for the cations c=(Ca2+, Mg2+) are taken from literature11.  193 

We show the results for the salting out coefficient, 𝛾56(𝑋,𝑚²),	 for a brine containing 194 

𝑚²	mol kg-1 of salt X in Fig. S2 for chlorides and perchlorates (compare with Equation 3 in 195 

our Methods Section). There are no direct data on O2 solubility for Ca- or Mg-perchlorates 196 

and, hence, there are no data on the secondary Pitzer interaction coefficients describing the 197 

interactions between O2-cation-ClO4
-, 𝜆56P¯P& . However, as we explain in the Methods 198 

Section, the secondary interaction coefficients are generally negative as they represent the 199 

disturbance of the respective cation-O2 and anion-O2 fields, which drive the solubility of O2 200 

in the liquid. Any reasonable value for 𝜆56P¯P& < 0 would only lead to a reduction of the 201 

salting out factor, 𝛾56(𝑋,𝑚²), and would therefore result in greater solubilities for O2 in 202 

perchlorate brines. Thus, we assume 𝜆56P¯P& = 0 for Ca- and Mg-perchlorate brines—and 203 

accept that this approach will tend to, if anything, underestimate the solubilities for O2 in 204 

those brines.  205 

 206 

2.1.4. Temperature dependence of Pitzer coefficients 207 

It is commonly found that the Pitzer coefficients introduced in Equation 4 in the 208 

Methods Section are only weakly temperature-dependent14,15 as suggested by experiments15. 209 

The wide amount of experimental data that we collected and against which we test our 210 

results11-13,15-19 suggest also a slight increase of Pitzer coefficients for lower temperatures. We 211 

find that the temperature dependence of the Pitzer coefficients could lead to an additional 212 
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decrease of the solubility of O2 in Ca- and Mg-perchlorate brines at 140 K by a factor of 3-213 

10 (most likely less than 5). 214 

To derive this estimate, we made use of the salting out theory of Tromans3. He 215 

observes that a salt reduces the solubility of O2 by reducing the molar volume of water (that 216 

is dissolving O2) into an apparent water volume, 𝑉&³³ . He also finds that the change in 217 

apparent water volume can be used to infer the salting out factor. Thus, what we do first is 218 

to derive the apparent molar water volume as a function of the brine density, 𝜌µ]¢£^,	molar 219 

concentration, 𝑚²,  of the salt, X, with molecular mass, 𝑀²,  in kg mol-1 and molecular 220 

crystalline volume, 𝑉²,, and the molar mass of pure water, 𝑀), leading to Equation 27 221 

𝑉&³³(𝑇) = �
1 +𝑚²𝑀²

𝜌µ]¢£^(𝑇)
− 𝑚²𝑉²�𝑀)(𝑇).																																																																														(27) 222 

Equation 27 is easiest to derive by computing the density of the brine, 223 

𝜌µ]¢£^,	assuming that water has an apparent volume, 𝑉&³³, and that the salt preserves its 224 

crystalline molecular volume, 𝑉² , and solving for 𝑉&³³  (for values, see Table S2). 225 

Second, we compute how this apparent water volume in Equation 27 changes during 226 

a reduction of temperature from 298-140 K. The temperature dependence for 𝑉&³³(𝑇) 227 

results from the temperature dependence of the brine density and the molar volume of water, 228 

but 𝑉&³³(𝑇) is mainly sensitive to small changes in brine density, 𝜌µ]¢£^(𝑇). Thus, to 229 

compute how	𝑉&³³(𝑇) changes with temperature, we focus solely on determining how the 230 

density of a brine,		𝜌µ]¢£^(𝑇), changes with temperature when salt and molality are fixed. 231 

There are no data or theoretical predictions for the temperature dependence of the 232 

density of perchlorate brines. To obtain an estimate of how much the density changes for 233 

Ca- and Mg-perchlorate brines with up to ~4.2 mol of salt per kg water (= 4.2 mol kg-1, the 234 
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concentration at the eutectic for Ca-perchlorate10,14,20,21, see Table S3 for values) for a 235 

temperature change from 298-140 K, we turn towards experimental data22,23 on the density 236 

of a range of brines of different compositions (i.e., NaCl, MgCl2, CaCl2, KCl, K2SO4, MgSO4, 237 

and Na2SO4), and examine how their densities change from 373-243 K for various salt 238 

concentrations up to 30 weight % (or ~4.2 mol kg-1). We observe that variations in brine 239 

density driven by temperature are rather small and would amount to less than a 5-10% 240 

increase in density from 298-140 K—assuming a linear increase of the density towards 241 

lower temperatures with a gradient determined between 303-243 K. Note, also, that our 242 

available data indicate that the density variations decrease for lower temperatures, and one 243 

obtains very similar results including data up to 373 K in order to estimate the density 244 

gradient with temperature. 245 

The derivation of the density gradient is illustrated in Fig. S3a, where we plot the 246 

density gradient for diverse brines with temperature as a function of molality using density 247 

data from 303-243 K. Extrapolating these values would lead to a density increase by less 248 

than 5-10% at 140 K in comparison to 298 K (on average about 6% for a random sampling 249 

of temperature intervals between 303-243 K). Note that this compares quite well with the 250 

predicted and measured density variation of NaCl brines between 240-300 K9, which would 251 

lead to a 5% increase in the NaCl brine density from 298-140 K for a linear extrapolation 252 

(which most likely overshoots the density change). 253 

With this approach, we use a density increase of 5-10% for a Ca(ClO4)2 brine from 254 

298-140 K to measure the apparent volume changes for a 4.2 mol kg-1 Ca(ClO4)2 brine from 255 

298-140 K, ¶�··(¸∙¹ºk»¼l)
¶�··(¹ºk»¼l)

≈ ¶�··(Q¾w	�)
¶�··(#¿À	�)

, where 𝜀 is either 1.05 or 1.1 (corresponding to the 256 

increase in brine density from 298-140 K by 5-10%). This is illustrated in Fig. S3b, where 257 
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we plot the change in apparent water volume as a function of standard brine density for our 258 

4.2 mol kg-1 Ca(ClO4)2 brine at 298 K. We calculate this density using Equation 27, inverting 259 

for the brine density and setting 𝑉&³³(298	𝐾) ≈ 𝑉)(298	𝐾) as a first order approximation. 260 

This leads to an estimated 4 mol kg-1 Ca(ClO4)2 brine density at 298 of ~1440 kg m-3, and 261 

thus values for  ¶�··(¸∙¹ºk»¼l)
¶�··(¹ºk»¼l)

 between 0.875-0.935.  262 

We then use the theory of Tromans3 that can be used to infer how a decrease in 263 

apparent volume by a factor of 0.875-0.935 affects the increase in salting out coefficient. 264 

Adhering to the reference KOH line of Tromans3 (see his Fig. 7 which shows how the 265 

salting out factor is a function of apparent volume change), we see that a temperature 266 

change from 298-140 K would maximally yield an increase in salting out factor between 267 

~3-10 (for the average value of 6% density increase from 298-140 K, it would be a factor 268 

of ~5). Therefore, even if we account for a potential temperature dependence of Pitzer 269 

coefficients, then we would maximally obtain dissolved O2 concentrations at 140 K that are 270 

3-10 (and likely less than ~ 5) times lower than what we observe with our best estimate 271 

shown in Figs. 1-4. 272 

 273 

2.1.5. Existence of perchlorate brines under Martian conditions and the importance of 274 

“near-surface” 275 

For a brine at surface temperature, T, and pressure, P, to be liquid for limited amounts 276 

of time the concentration of salt must correspond to the critical molality, 𝑚²(𝑇),	at this 277 

temperature (see Methods Section) but the pressure must be also above the triple point 278 

pressure, 𝑃Z[(𝑚²),	for that specific brine. For pure water, the triple point pressure is ~6.1 279 

mbar, around the average atmospheric pressure on Mars. At this pressure, the melting and 280 
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boiling temperatures converge, which would limit the time-limited presence of liquid water 281 

to temperatures close to 273 K (this explains the narrow water range in Fig. 2 for Mars). 282 

For brines, however, the triple point pressure is significantly reduced. Specifically, for 283 

Ca-perchlorate brines, the salt concentrations, 𝑚²,	needed for the brine to be liquid at the 284 

surface temperatures obtained with our general circulation model (GCM) simulations 285 

(below ~230 K, see Table S4) result in triple point pressures at least one order of magnitude 286 

below the minimal atmospheric surface pressure of ~1 mbar encountered in our GCM. The 287 

triple point pressure can be approximately computed as the intersection between the 288 

standard “water ice-vapour” phase curve in temperature-pressure space and an isotherm 289 

for a given temperature, 𝑇Z[ = 𝑚𝑎𝑥(𝑇, 𝑇 Ã)	(with surface temperatures 𝑇 ranging from 290 

~145-230 K and the eutectic temperature for Ca-perchlorate brines of  𝑇 Ã = 198.2	𝐾). 291 

Therefore, the pressure conditions on Mars support the studied Ca-perchlorate brines with 292 

salt concentrations 𝑚²(𝑇), which we show in Fig. 3, to be liquid for a limited amount of 293 

time (atmospheric water vapour limits the time of existence, see below). Moreover, due to 294 

the approximate incompressibility of water and brines between ~1 bar and ~1 mbar, we do 295 

not expect any significant change in eutectic temperature from Earth to Mars surface 296 

pressures.  297 

Note that for remaining liquid for extended periods of time (so next to stability against 298 

freezing and sublimation), the partial vapour pressure will also matter because it determines 299 

the stability against evaporation. Here, we look only at the existence of brines and do hence 300 

not account for additional effects by the atmospheric vapour pressure at this point in time. 301 

We note however that even a thin layer of soil or regolith can effectively prevent 302 
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sublimation, which makes our results especially valid in the shallow subsurface—303 

exemplifying the choice of focusing on “near-surface” environments in this first study. 304 

 305 

2.1.6. Comparison with Earth today 306 

It is interesting to note that the Mars-to-Earth solubility conversion factor (= solubility 307 

value at the same temperature but changing from an atmosphere of 6.1 mbar with 0.145% 308 

O2 to one with 0.21 bar O2 is ~23,742). So, if the solubility of O2 in pure water on Mars at 309 

slightly above 273.15 K is ~2×10-5 mol m-3, it is, at the same temperature, about 23,742 310 

greater on Earth today, or around 0.47 mol m-3.  311 

The main enhancement factor for dissolved O2 on modern Mars is the much lower 312 

surface temperature in comparison to the Earth.  313 

 314 

2.2. Climate model 315 

In the next subsections, we discuss our climate model in greater detail. 316 

 317 

2.2.1. Albedo variation with obliquity change  318 

The albedo of the Martian surface and how it changes with obliquity can potentially 319 

be a significant control on surface temperatures. For any rotating planet, annually averaged 320 

insolation at the poles increases going from zero obliquity to larger values, leading to a 321 

warming of cooler regions (poles) and a cooling of warmer regions (low latitudes) as 322 

obliquity rises (as seen in Table S4 for annually averaged temperatures for present-day 323 

Mars).  For a homogenous albedo distribution across the planet’s surface, above 54° 324 

obliquity, the poles receive more insolation than the equator24, and become the ‘warmer’ 325 
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regions of the planet (on an annual basis), whereas the tropics become the ‘cooler’ region 326 

and, therefore, the preferred location for surface ice formation. 327 

The exact timing of how surface ice on Mars evolves with changing obliquity is 328 

uncertain, as is the exact distribution of tropical surface ice at high obliquity. Different 329 

studies alternatively suggest that water ice will condense widely across high topographic 330 

and/or high thermal inertia sites on the planet at high obliquity25, or only in localized glacial 331 

deposits on the flanks of the Tharsis Montes26. The impact of the exact distribution on 332 

surface albedo on temperature can potentially be significant. For example, during the early 333 

phases of an obliquity transition (say, from lower to higher values), ice will likely remain 334 

in the polar regions for some time after the obliquity rises because of the multi-kilometre 335 

thickness of the polar caps. Albedo, then, may remain relatively high at the poles, while it 336 

concurrently increases in the tropics due to the development of ice deposits there as 337 

obliquity rises. Later in the obliquity transition, though, it is likely that the albedo at the 338 

poles will decrease as a darker, dirty sublimation lag forms atop the retreating polar ice cap. 339 

The timing of this transition will be gradual and difficult to model precisely. 340 

We perform a series of tests of the end-member cases from previous studies25,26, looking 341 

at the effect of their putative ice distributions on the global surface temperatures at high 342 

obliquity, looking at different stages of the aforementioned evolution, with bright ice in the 343 

poles only, in both the tropics and poles, and in the tropics only. While the annually 344 

averaged global surface temperature does decrease with the presence of tropical ice, (which 345 

covers a larger fraction of the surface with high albedo ice than the poles at low obliquity), 346 

the general trend in surface temperatures with obliquity continues regardless of the exact 347 

distribution of ice. Differences in surface temperatures between the end members of surface 348 
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ice distribution are in the range of 5-10 K while the minimum of the annually averaged 349 

surface temperature values varies by up to ~35 K.  This behaviour is reflected in the O2 350 

solubility results in Fig. 4a where, with increasing obliquity, the maximum solubility 351 

(corresponding to the lowest annually averaged temperature on the surface) generally 352 

decreases. 353 

 354 

2.2.2. South polar ice cap 355 

We do not impose any constraints on ice caps for our obliquity calculations; however, 356 

on modern-day Mars, observations reveal a perennial polar cap of CO2 ice in the south 357 

(SPC), which global climate models cannot self-consistently reproduce without making 358 

specific, ad hoc assumptions. In our GCM calculations, we set the surface temperature to 359 

the pressure-dependent CO2 frost point for all locations poleward of -85°. This GCM model 360 

is listed in Table S4 as “25° with SPC” and represents the most realistic climate model for 361 

Mars today. We use this model to study modern Mars and to create Fig. 3 in our main 362 

manuscript. Mechanisms for forming such a south polar CO2 cap are not well understood, 363 

and, hence, we cannot (and do not) extrapolate it to other obliquities; therefore, we also run 364 

a 25° obliquity simulation without the presence of a south polar cap, as shown in Fig. 4. 365 

Fig. 4 highlights that the “with SPC” model leads to about one order of magnitude greater 366 

maximum solubility values on the Martian surface today because of the fixed low 367 

temperatures for the southern polar regions. The WC scenario is not much affected by the 368 

specific assumptions on SPC. 369 
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We must emphasize that there is no reason to assume that a SPC should form at 370 

different, non-modern obliquities, especially not at higher obliquities where the poles are 371 

expected to be much warmer (see Table S4).  372 

If we were to arbitrarily enforce a SPC at all obliquities, then this would significantly 373 

reduce the secular variation of the maximum value of O2 solubility with obliquity change. 374 

This is because, at each obliquity, there would be a small region at the south pole with 375 

temperatures at the pressure-dependent frost point of CO2, which would only vary with 376 

pressure changes associated with an evolving obliquity. The secular behaviour of the 377 

average values of O2 solubility would, however, not be changed by assuming an SPC at 378 

each obliquity because of the small size of the SPC region. Also, as we show in Fig. 4, the 379 

lowest temperatures apart from the SPC do increase with increasing obliquity as the poles 380 

start to warm; thus, the highest values outside the SPC for the solubility of oxygen in brines 381 

do indeed decrease significantly with obliquity, suggesting the robustness of our trends 382 

independent of our SPC assumption.  383 

 384 

2.2.3. Atmospheric collapse 385 

For obliquities below ~10-15°, we find that, on geological timescales, the atmosphere 386 

collapses due to the presence of permanent CO2 cold traps in the polar regions. This can be 387 

seen in Table S4, where we show how the minimum value for the annually averaged surface 388 

temperature is at the pressure-dependent CO2 frost point temperature for lower obliquities. 389 

This model scenario is not likely to have occurred in the last twenty million years, might 390 

occur rarely in the next five million years (Fig. 4b), but might have occurred more 391 

frequently in the deeper past27.  392 
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Atmospheric collapse will, hence, not significantly affect the time period that we study, 393 

but it is interesting to consider what could happen to O2 concentrations during such an event. 394 

O2 is produced in the Martian atmosphere through photochemical reactions from CO2 and 395 

H2O, and subsequent hydrogen escape28; hence, in order to understand how O2 reacts to 396 

atmospheric collapse, we need to understand how atmospheric water and CO2 behave 397 

during an atmospheric collapse. See Section 2.2.5, where we explore in detail how the 398 

mixing ratios of O2, CO2, and H2O scale over different timescales. 399 

 400 

2.2.4. Averaging method and extension to daily temperature variations 401 

For practical reasons, we generate climate data of annual averages of temperature and 402 

pressure as a function of location on the Martian surface for various obliquities (see details 403 

on climate model above). The solubility at each point on Mars’ surface is evaluated for this 404 

annual average of temperature and pressure. It is important to point out that by doing such 405 

time-averaging, the solubility results shown in Figs. 1-4 and the differences between 406 

minimum and maximum solubilities shown in Fig. 4 are lower than if we instead compute 407 

the annual average of solubility as a function of hourly or daily averages.  408 

With our averaging approach, we underestimate the solubility because [𝑂#	]&' 409 

increases exponentially towards 0 K, hence the gradient ÄV[56	]��
VZ

Ä  is greater for lower 410 

temperatures and the solubility evaluated at the average annual temperature is lower than 411 

the solubility averaged over a greater time (and, hence, temperature) interval. The solubility 412 

is linear in pressure and, thus, using the annually averaged pressure does represent the 413 

precise average for the solubility as a function of pressure. Computing the annual average 414 

of the O2 solubility directly from the non-averaged temperature (daily or hourly) would 415 
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only increase our O2 solubility estimates and strengthen the conclusions. 416 

 417 

2.2.5. Variation in the Mars O2 mixing ratio and timescales of interest 418 

We assume a constant mixing ratio of O2, in agreement with currently published 419 

measurements5,29-31. To explore the validity and possible limitations of this assumption, let 420 

us briefly revisit how O2 forms in the Martian atmosphere: CO2 is the major component in 421 

the Martian atmosphere (volume mixing ratio of ~0.96)5. CO2, being photolyzed by solar 422 

UV radiation below 2275 Å (2CO2 + UV→ 2CO + O2), is the major source of O228,32-33, 423 

with a photochemical lifetime for O2 of ~30 years34. Without catalysts, the recombination 424 

of CO and O to CO2 is much slower than the combination of two O atoms to form O2, and 425 

it is primarily (amongst other factors like the temperature dependence of the CO2 cross 426 

section28) the existence of odd hydrogen species (HOx, which are mainly formed by the 427 

photolysis of water vapour) that catalyse the recombination of CO and O into CO2, 428 

allowing the Martian atmosphere to predominantly consist of CO2 and have only trace 429 

amounts of O2, with a modern O2 mixing ratio of ~0.145%5.  430 

We would expect that the abundance of O2 is primarily linked to the abundance of 431 

CO2 and H2O in the Martian atmosphere; hence, in order to explore how the abundance 432 

and the volume mixing ratio of O2 could fluctuate over different timescales, we have to 433 

first explore the variability of the abundances of CO2 and H2O over different timescales.  434 

Here, we focus on diurnal and seasonal timescales of CO2 and H2O to study the 435 

robustness of our O2 solubility predictions based on annual averages for a fixed obliquity, 436 

and on larger timescales in the order of thousands to millions of years that are relevant to 437 

changes in obliquity27 or thousands of years that are relevant to atmospheric collapse. 438 
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2.2.5.1. Diurnal and seasonal variability 439 

The CO2 and H2O cycles on Mars reflect deposition and sublimation of both species 440 

on diurnal and seasonal scales. However, as indicated by work on dry atmospheres35, four 441 

orders of magnitude variation in the H2O abundance affect the O2 mixing ratio by less than 442 

a factor of three, and, hence, the diurnal and seasonal variations in water vapour, which are 443 

one to two orders of magnitude36, do not affect our conclusions—which suggests solubility 444 

differences of many orders of magnitude over the Martian near-surface. If there is, for our 445 

work, any significant variation of the O2 mixing ratio for annually averaged maps, then this 446 

could come from variations in the CO2 abundance, which can fluctuate by 25% on modern 447 

Mars on seasonal or diurnal timescales5. The mixing ratio of O2 should, at first thought, 448 

increase with a decrease of the CO2 partial pressure (when CO2 freezes) on timescales 449 

much shorter than the lifetime of O2 (hence, on seasonal or diurnal timescales). This would, 450 

however, only modulate the mixing ratio of O2 by 25%, which is much smaller than the 451 

order of magnitude trends that we observe. However, there are no published data that 452 

support such behaviour, which might suggest that the photochemical production rate of O2 453 

is fast enough to tightly couple the abundance ratio of CO2 to O2. Hence, the mixing ratio 454 

of O2, as CO2 is the primary atmospheric component, should, for our purposes, remain 455 

rather constant on seasonal timescales.  456 

 457 

2.2.5.2. Secular variation timescales 458 

2.2.5.2.1. Obliquity change 459 

To infer how the solubility of O2 could have changed in recent history, we studied 460 

how climate changes for different obliquities. Such changes occur over thousands to 461 

millions of years27. These timescales are much greater than the lifetime of O2 and, hence, 462 
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we expect that the abundance ratio of CO2/O2 remains constant and that the amount of O2 463 

scales with the amount of CO2 and, approximately, to total pressure. Moreover, recent work 464 

on dry planets35 illustrate that many orders of magnitude changes in water vapour would 465 

only slightly affect the O2 mixing ratio. Hence, we expect the volume mixing ratio of O2 466 

to remain rather constant when looking at obliquity variations.  467 

 468 

2.2.5.2.2. Atmospheric collapse 469 

We find in our calculations that, for low obliquities, atmospheric collapse can occur, 470 

where CO2 and H2O fully freeze out. Such events do not seem likely in the timeframe that 471 

we study; however, we find such events lasting thousands of years, on timescales much 472 

greater than the photochemical lifetime of O2. The first species to fully freeze out would 473 

be H2O. This could lead to a full photolytic transformation of CO2 into CO and O2,28,35 474 

with O2 still being non-condensable at such temperatures—leading to the possibility of a 475 

highly oxidizing Mars environment during such times of atmospheric collapse, which 476 

might be related to observations of MnO2 by MSL37 and redox-stratified ancient lake 477 

environments38. Nonetheless, in the same timeframe, the CO2 atmosphere would freeze 478 

out, and, hence, to fully answer the question of what really happens to O2 during times of 479 

atmospheric collapse, one would have to study the dynamic aspects of such a transition and 480 

individual duration of collapse for each species, which is beyond the scope of this paper. 481 

 482 

2.2.5.3. Conclusion for assuming a constant O2 mixing ratio 483 

Variations of the mixing ratio of O2 have so far not been conclusively found, but if 484 

they occur, then they should modulate our results only by a factor of a few, whereas our 485 

geographic and obliquity-driven secular change conclusions show differences in O2 486 
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solubilities by many orders of magnitude. Therefore, our assumption of a constant mixing 487 

ratio for O2 is reasonable. 488 

 489 

3. Life and aerobic environments 490 

3.1. Aerobic environments versus aerobic habitats 491 

We explore Martian brines that could contain enough O2 to be biologically relevant and 492 

accessible by organisms. However, we intentionally study “aerobic environments” and not 493 

“aerobic habitats”. We could well imagine an aerobic habitat (that organisms inhabit) at 494 

greater depth (where it is significantly warmer) below an O2-rich brine environment 495 

accessing the stored O2. Hence, although the aerobic environments we explore could be a 496 

habitat (as we explore in greater depth in the next subsections), such O2-rich environments 497 

can be also seen as only biologically relevant—making the aerobic environments we 498 

explore biologically relevant far below the not-yet-well-constrained lower temperature 499 

limit for life (see Section 3.2).  500 

 501 

3.2. The lower temperature limit for life and the potential of aerobic habitats 502 

To answer whether the aerobic environments that we explore could be more than just 503 

biologically relevant resources and, indeed, be habitats, much more work beyond the scope 504 

of this paper will be required, focusing on the habitability of highly saline, likely low water 505 

activity fluids, exploring not just the availability of O2, but its fluxes and complementary 506 

reducing species, and especially studying the low temperature limits to life. The question 507 

of what the lower temperature limit to life is sticks out. While the temperatures for high-O2 508 

brines described here are low relative to those typical for life on Earth, no hard, lower 509 
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temperature limit for life has been established39; metabolic activity and cell growth have 510 

been observed at temperatures below -20℃40.  511 

The lower temperature limit for life is much less constrained than the upper temperature 512 

limit for life, and we have to differentiate between the lower temperature limits for survival, 513 

life cycle completion (i.e., reproduction), and metabolism39-42.  514 

The conditions setting the lower temperature limit for life are likely intracellular 515 

vitrification at low temperatures41-42, where fluids inside a cell start to behave like an 516 

amorphous ice of high viscosity (>1012 Pa s). Intracellular vitrification occurs for water on 517 

the Earth around -20℃ and is driven by freezing of the extracellular medium. Note, 518 

however, that vitrified cells, although they cannot metabolize, do survive the vitrification 519 

process41-42. However, the Martian brines that we study can absorb atmospheric O2 exactly 520 

because they can remain liquid far below the freezing point of water. As an example, the 521 

freezing temperature of Ca-perchlorate brines is around 198 K (-75°C), far below - 20℃. 522 

In such a medium (which is not common on the much warmer Earth but should be more 523 

common in cold, dry environments like the McMurdo Valleys or the Atacama Desert), 524 

there would be no freezing of extracellular medium and, hence, no reason for intracellular 525 

vitrification. The viscosity of the fluid would also remain rather small (which corresponds 526 

to the brine not being frozen or vitrified), allowing vigorous nutrient delivery for metabolic 527 

activity. The much lower freezing temperatures for Martian brines and the ability of some 528 

of them to effectively supercool, even when mixed with soils, are the reasons why we study 529 

such brines as materials interesting to life. Hence, the general reason for a lower 530 

temperature limit for life, namely extracellular medium freezing and intracellular 531 

vitrification, should occur in Martian brines at much lower temperatures than -20℃—532 



 25 

exemplifying the importance of freezing point reduction for the survival of life at much 533 

lower temperatures.43 534 

In conclusion, if Martian life could adapt to tolerate high salt concentrations such as 535 

those in the brines described here, this could lead to a lower temperature limit and access 536 

to higher dissolved oxygen concentrations due to the very low freezing points and 537 

additional supercooling ability of these systems. 538 

 539 

3.3. Aerobic habitats on Mars under warmer conditions? 540 

Temperatures above -20℃ (and even above the freezing point of water) exist in the 541 

Martian near-surface (compare with Figs. 1 and 2 in the main article). We know that (1) at 542 

temperatures above -20℃, at least from a temperature perspective, life can survive, grow, 543 

and metabolize, (2) above the freezing point of water our model has been validated with 544 

experimental data, and (3) at such “warmer” temperatures (above -20℃ and even above 545 

the freezing point of water) our model predicts a dissolved O2 concentration of ~10-5 mol m-546 

3, well above the limits of respiration for bacteria44,45. Hence, although at very low 547 

temperatures the question remains open as to whether aerobic environments can be habitats, 548 

we know that on modern Mars—from an O2 availability and temperature perspective—549 

near-surface conditions exist that could enable aerobic habitats. 550 

 551 

4. The next steps 552 

4.1. The path towards fluxes and redox gradients 553 

As we show in Fig. S4, it is primarily temperature and secondarily pressure that 554 

determine the potential solubility of O2 in Martian near-surface environments. The 555 
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geographic variations in O2 content lead to natural gradients in concentrations across 556 

environments where waters might naturally flow46,47. Areas where spatial gradients (as 557 

shown in Fig. S4) in O2 solubility are largest are observed on Tharsis, across Meridiani, 558 

Arabia Terra, and within the Hellas basin.  559 

Next to studying the fluxes of O2 on Mars, in order to explore the potential for aerobic 560 

life, we will also have to explore, in subsequent steps, the fluxes of reducing species, as 561 

life needs redox gradients in order to thrive. 562 

 563 

4.2. Distribution, likelihood, and timescales of existence of brines on Mars 564 

The opportunity for oxidative processes involving O2 during the chemical weathering 565 

of Mars’ crust will reflect a convolution between the availability of water and brines and 566 

their O2 contents. Our results suggest that we should expect a degree of patchiness in 567 

oxidative chemistry associated with weathering; the same would be true for the potential 568 

energetic gradients for aerobic respiration. To fully explore this patchiness, we need to 569 

convolve our results with the distribution and the likelihood of brines on Mars: here, we 570 

compute how climate impacts the potential for aerobic environments on Mars in 3D (Fig. 571 

3), assuming that perchlorate and water are equally available everywhere close to the 572 

planet’s surface. Naturally, we expect spatial variability in the distribution of water and 573 

perchlorates (possibly linked with each other), and, hence, as a next step, it will be 574 

inevitable to explore how the distribution of perchlorates and water availability across the 575 

Martian near-surface (and also deeper subsurface) might vary, how local vapour pressure 576 

and soil thickness affect evaporation timescales (beyond just the potential for existence as 577 

addressed here), how ice and surface features might impact the formation and longevity of 578 
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liquid brines close to the surface, and how these factors would affect our results.  579 

Such an extension, however, demands a much deeper insight into the dynamics of 580 

brine formation/destruction and gas dissolution processes (connecting subsurface and 581 

atmosphere), which is beyond the scope of this first study. For the next steps of our study, 582 

it would be informative to know how chlorine and hydrogen concentrations change with 583 

depth in the near-surface and ultimately in the deeper subsurface. Unfortunately, currently 584 

available data from the Mars Odyssey gamma ray spectrometer reach only down to a few 585 

microns in depth, are strongly modulated by dust, and cannot yet see the meaningful depths 586 

of the regolith that have daily or seasonal thermal cycles.  587 
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Figures: 588 

 589 

Fig. S1. 590 

Thermodynamic lower limit to the solubility of O2: we compare the best estimate (BE, 591 

solid blue line) for the solubility curve of O2 in supercooled water to the thermodynamic 592 

worst case (WC, solid red line), which sets the specific heat of dissolved O2 to zero for 593 

temperatures below 273 K. Formally, this is only possible for T = 0 K, and thus WC marks 594 

a lowermost estimate. We show also a solubility curve assuming 	𝐶[,56,&'	(𝑇) = 0 for all 595 

temperatures (black dotted line) and one assuming	𝐶[,56,&'	(𝑇) = 0	 for 𝑇 < 225	𝐾 (pink 596 

dotted line).  597 
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     598 

Fig. S2. 599 

Salting out coefficients for O2 in perchlorate and chloride brines: using data on the 600 

solubility of O2 in various chlorides (solid) and perchlorate (dashed) brines11-13, we compute 601 

Pitzer interaction coefficients at 298 K for Ca- and Mg-perchlorates, describing the salting 602 

out factor, 𝛾56(𝑋,𝑚²),	of O2 as a function of salt concentration. We also plot the salting 603 

out factors for other relevant brines (for parameters, see Table S2). [𝑂#]&',²(𝑇, 𝑃) =604 

Q
Æ�6(²,¡Ç)

	[𝑂#]&',)(𝑇, 𝑃), wherein the salting out factor relates the solubility of O2 in pure 605 

water [𝑂#]&',)(𝑇, 𝑃) and in the brine [𝑂#]&',²(𝑇, 𝑃). The salting out factors for Mg- and 606 

Ca-perchlorates are likely overestimated here, as we neglect electrostatic cation-anion-O2 607 

interactions. 608 

Salting out coefficients

mX in molkg-1
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 609 

Fig. S3. 610 

The temperature dependence of salting out factors for O2 in various brines: (a) the 611 

density gradient with temperature as a function of molality using density data from 303-612 

243 K. (b) Using an average density variation from 5-10% for a Ca(ClO4)2 brine, we 613 

compute how the apparent volume of water changes from 298-140 K for a range of 4.2 m 614 

Ca(ClO4)2 brine densities at 298 K (our estimated value is ~1400 kg m-3, see below) by 615 

plotting ¶�··(¸∙¹ºk»¼l)
¶�··(¹ºk»¼l)

≈ ¶�··(Q¾w	�)
¶�··(#¿À	�)

, where 𝜀 is either 1.05 (red) or 1.1 (blue) (representing 616 

the increase in brine density from 298-140 K by 5-10%). The apparent volume depends 617 

slightly on the reference brine density at 298 K, which we estimate by using Equation 27, 618 

inverting for the brine density and setting 𝑉&³³(298	𝐾) ≈ 𝑉)(298	𝐾) , leading to an 619 

estimated 4.2 mol kg-1 Ca(ClO4)2 brine density at 298 K of ~1440 kg m-3, and ¶�··(¸∙¹ºk»¼l)
¶�··(¹ºk»¼l)

  620 

between 0.875 and 0.935. Along the KOH line in the Tromans model3, we get an increase 621 

of the salting out factor between ~3-10 (and likely less than a factor of ~ 5). 622 

a b
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 623 

Fig. S4. 624 

The predominant factors that control O2 solubility, and spatial O2 solubility gradients 625 

on modern Mars: this plot shows the O2 solubilities for modern-day Mars using local 626 

annual averages for surface temperature and pressure (top) as well as spatial gradients 627 

(bottom) in O2 solubility. The primary control on O2 solubility is temperature and 628 

secondary modifications result from pressure.  629 
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Tables: 630 

Table S1. 631 

Dissolved oxygen parameters: all thermodynamic parameters needed to compute the 632 

specific heat capacity for O2 at constant pressure in the gaseous and aqueous phases, 633 

essential for deriving the solubility of O2 in pure water as a function of pressure and 634 

temperature in Equations 1-2 in the Methods Section of our main article. The parameters 635 

are taken from experiments1. The partial volume fraction in the Martian atmosphere is 636 

approximately 𝑉𝑀𝑅56 = 0.001455, and 𝑅 = 8.3144598	J	molPQ	KPQ is the universal gas 637 

constant. 638 

Thermodynamic parameters for the solubility of O2 in pure water 
Phase	of	O2	 𝝁Ì\𝑻𝒓𝒆𝒇`		

[J	mol-1]	
𝑺\𝑻𝒓𝒆𝒇`	

[J	K-1	mol-1]	
𝑪𝑷\𝑻𝒓𝒆𝒇`	
[J	K-1	mol-1]	

𝑻𝒓𝒆𝒇	
[K]	

𝑷𝒓𝒆𝒇	
[Pa]	

Gaseous	 0	 205.028	 29.332	 298	 1.01325∙105	
Aqueous	 16506	 109	 205.266	 298	 1.01325∙105	

  639 
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Table S2. 640 

Salting-out and salt parameters: specifies the ions, molality of cations (c) or anions (a) 641 

per molality of salt, the Pitzer coefficients 𝜆11-13 for the interaction of O2 molecules with 642 

cations (c), anions (a), and cations & anions (c-a), and the crystalline molar mass, 𝑀², and 643 

volume, 𝑉²  (values have been taken from experiments3 or computed using data22 with 644 

𝑉² = 𝑀²/𝜌², where 𝜌²	is the density at 298 K and 1 atm=1.01325 bar), for Ca(ClO4)2, 645 

Mg(ClO4)2, NaClO4, KClO4, MgCl2, CaCl2, NaCl, KCl, MgSO4, K2SO4, and Na2SO4. The 646 

crystal data is only necessary to estimate the temperature dependence of the salting out 647 

factor. 648 

Salting-out parameters 
Salt	 Ions 𝒇𝒄	 𝒇𝒂	 𝝀𝑶𝟐P𝒄	

[kg	mol-1]	
𝝀𝑶𝟐P𝒂	

[kg	mol-1]	
𝝀𝑶𝟐P𝒄P𝒂	
[kg2	mol-2]	

𝑴𝑿	
[kg	mol-1]	

𝑽𝑿	
[10-6	m3	mol-1] 

Ca(ClO4)2	 Ca2+/ClO4-	 1	 2	 0.2497	 -0.007	 0	 0.23898	 90.147	
Mg(ClO4)2	 Mg2+/ClO4-	 1	 2	 0.2298	 -0.007	 0	 0.22321	 101	
NaClO4	 Na+/ClO4-	 1	 1	 0.1602	 -0.007	 0	 0.12244	 48.988	
KClO4	 K+/ClO4-	 1	 1	 0.1519	 -0.007	 0	 0.13855	 54.980	
MgCl2	 Mg2+/Cl-	 1	 2	 0.2298	 0	 -0.00565	 0.09521	 40.81	
CaCl2	 Ca2+/Cl-	 1	 2	 0.2497	 0	 -0.0169	 0.11098	 50.5	
NaCl	 Na+/Cl-	 1	 1	 0.1602	 0	 -0.00919	 0.05844	 27.02	
KCl	 K+/Cl-	 1	 1	 0.1519	 0	 -0.0211	 0.07455	 37.52	
MgSO4	 Mg2+/SO42-	 1	 1	 0.2298	 0.0878	 0	 0.12037	 40.7	
K2SO4	 K+/SO42-	 2	 1	 0.11519	 0.0878	 0	 0.17426	 65.48	
Na2SO4	 Na+/SO42-	 2	 1	 0.1602	 0.0878	 -0.046	 0.14204	 53.33	

  649 
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Table S3. 650 

Eutectic curve parameters: specifies the eutectic temperature, 𝑇 Ã , the eutectic salt 651 

concentration,	𝑚^Ã (in mol salt per kg water), and the parameters used to parameterize the 652 

critical concentration for the melting curve with temperature for the salts shown in Fig. 1, 653 

which are Ca(ClO4)2, Mg(ClO4)2, NaClO4, MgCl2, CaCl2, NaCl, and MgSO4. Values are taken 654 

from experimental data10,48. The melting curve is defined by 𝑚²(𝑇) = ∑ 𝑝¢𝑇¢�
¢vw 	 , 𝑇 > 𝑇 Ã 655 

and 𝑚²(𝑇) = 𝑚^Ã	, 𝑇 ≤ 𝑇 Ã , and determined with experimental data10,14,20,21,48,49. The values for 656 

the maximal supercooling temperature, Tsc,  are taken from available experiments20. 657 

 Melting curve parameters 
Salt	 𝑻𝒆𝒖	

[K]	
𝑻𝒔𝒄	
[K] 

𝒎𝒆𝒖	
[mol	kg-1]	

𝒑𝟑	
[10-5]	

𝒑𝟐	
	

𝒑𝟏	
	

𝒑𝟎	
	

Ca(ClO4)2	 198.2	 140	 4.176	 -1.0689	 0.0069556	 -1.5378	 119	
Mg(ClO4)2	 209.3	 140	 3.375	 -1.4134	 0.0094903	 -2.1498	 167.22	
NaClO4	 239.2	 227.7	 9.2	 -0.6053	 0.003012	 -0.6241	 69.098	
MgCl2	 240.15	 226.4	 2.84	 -8.5302	 0.063718	 -15.911	 1330.6	
CaCl2	 224	 n/a	 4	 -2.56	 0.017736	 -4.1378	 328.69	
NaCl	 251.85	 245.6	 5.17	 0	 0	 -0.23877	 65.22	
MgSO4	 269.55	 254	 1.72	 0	 0	 -0.47778	 130.51	

  658 
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Table S4. 659 

Surface temperatures across obliquities: for the simulated obliquities, the minimum, 660 

average, and maximum values on the Martian globe for annually averaged surface 661 

temperatures. The annotation “with SPC” is representing modern Mars, where a perennial 662 

CO2 cap at the south pole is assumed. The values [*] for obliquities of 40°, 60°, and 90° 663 

represent climate simulations where the Southern Polar CO2 cap has sublimated, doubling 664 

the average surface pressure to ~12 mbar. 665 

Temperature	variation	on	the	Martian	surface	with	obliquity	
Obliquity	

[°]	
Minimum	annual	

average	
[K]	

Global	annual	
average	
[K]	

Maximum	annual	
average	
[K]	

5	 144.4	 205.7	 229.7	
10	 144.5	 205.4	 229.5	
15	 149.6	 205.0	 229.0	
20	 156.0	 204.4	 228.3	
25	 161.8	 203.703	 227.413	
25	(with	SPC)	 144.2	 203.651	 227.389	
40	 172.1	[*175.7]	 201.6	[*204.6]	 224.1	[*226.9]	
60	 179.7	[*183.2]	 198.0	[*201.0]	 214.4	[*216.8]	
90	 177.2	[*179.5]	 195.4	[*198.8]	 208.8	[*211.9]	

  666 
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