1,518 research outputs found

    Limits on the use of cobalt sulfide as anode of p-type dye-sensitized solar cells

    Get PDF
    Thin films of cobalt sulfide (CoS) of thickness l < 10m have been employed as anodes of p-type dye-sensitized solar cells (p-DSCs) when P1-sensitized nickel oxide (NiO) was the photoactive cathode and /I - constituted the redox mediator. In the role of counter electrode for p-DSCs, CoS was preferred over traditional platinized fluorine-doped indium oxide (Pt-FTO) due to the lower cost of the starting materials (Co salts) and the easier procedure of deposition onto large area substrates. The latter process was carried out via direct precipitation of CoS from aqueous solutions. The photoconversion efficiency (η) of the corresponding device was 0.07%. This value is about 35% less than the efficiency that is obtained with the analogous p-DSC employing the Pt-FTO anode (η = 0.11). Unlike p-DSCs based on Pt-FTO anodes, the photoelectrochemical cells employing CoS electrodes showed that this anodic material was not able to sustain the photocurrent densities generated by P1-sensitized NiO at a given photopotential. Illumination of the p-DSCs with CoS anodes and P1-sensitized NiO cathodes actually induced the reverse bias of the photoelectrochemical cell with CoS behaving like a p-type semiconductor with no degeneracy. © 2017 IOP Publishing Ltd

    Dissipation in a weak-link-limited superconductor as a problem of percolation theory

    Get PDF
    Broadening of the resistive transition of sintered GdBa2Cu3O7-x superconductor has been studied varying the measuring current over the range of five orders of magnitude. The observed well-defined branching points in the resistive transition coincide with the quasi-Ohmic saturation of V-I curves and scale with the average grain size. The results suggest the validity of a simple percolation model for dissipation in systems whose global superconductivity is realized by Josephson coupling of the superconducting grains. A common origin of structured resistive transition, observed in many superconducting systems, has been also discussed

    Scalar stars and lumps with (A)dS core

    Full text link
    We explore the possibility of embedding regular compact objects with (anti) de Sitter ((A)dS) core as solutions of Einstein's gravity minimally coupled to a real scalar field. We consider, among others, solutions interpolating between an inner, potential-dominated core and an outer, kinetic-term-dominated region. Owing to their analogy with slow-roll inflation, we term them gravitational vacuum inflative stars, or gravistars for short. We systematically discuss approximate solutions of the theory describing either the core or the asymptotically-flat region at spatial infinity. We extend nonexistence theorems for smooth interpolating solutions, previously proved for black holes, to compact objects without event horizons. This allows us to construct different classes of exact (either smooth or non-smooth) singularity-free solutions of the theory. We first find a smooth solution interpolating between an AdS spacetime in the core and an asymptotically-flat spacetime (a Schwarzschild solution with a subleading 1/r21/r^2 deformation). We proceed by constructing non-smooth solutions describing gravistars. Finally, we derive a smooth scalar lump solution interpolating between AdS4\text{AdS}_4 in the core and a Nariai spacetime at spatial infinity.Comment: 26 pages, 5 figures, 1 appendi

    Energy performance of single family houses in Serbia analzsis of calculation procedures

    Get PDF
    Energy certification of buildings in Serbia was introduced in 2011 and energy label depends on energy need for heating per unit floor area of heated space, calculated by the fully prescribed monthly quasi-steady-state method defined by ISO 13790. In the Republic of Serbia, most of families live in single-family houses built before the energy certification of buildings was introduced. Therefore, the estimation of energy performance of the existing buildings is important for labeling, and evaluation of energy saving measures and energy strategies to be implemented. This paper examines the applicability of monthly method defined by National legislation on the existing buildings stock in Serbia, by comparing it to the more accurate dynamic simulation method. Typical single-family houses are taken as a test case, since they are responsible for about 76% of energy consumption for heating. The results show that the dynamic simulation method estimates 21% to 54% higher energy need for heating, compared to the monthly method. Also, the monthly method estimates up to 13% higher savings by typical building envelope energy saving measures, compared to the dynamic simulation. This paper recommends improvement in procedures for calculation of building energy performance index to better assess energy consumption, effects of energy saving measures, and create solid background for developing and implementing of energy saving strategies

    Efficient Numerical Analysis of a Periodic Structure of Multistate Unit Cells

    Get PDF
    Application of the synthetic function expansion (SFX) algorithm to the analysis of active 1- and 2D periodic structures is presented. The single unit cell consisting of a microstrip line loaded by patches positioned below the line is turned into an active structure by inserting a pair of 2 switches to the two ends of each patch; the states of the pair of switches are changed contemporaneously. Variation of the states of the switches modifies the current distribution on the structure. The tunable multistate unit cell is arranged in 24-, 120-, and 9 Ă— 24 element configurations and numerically analyzed. The computational complexity required for the characterization of the large number of possible configurations is lightened by the use of the proposed numerical method

    Simplified high-order Volterra series transfer function for optical transmission links

    Get PDF
    We develop a simplified high-order multi-span Volterra series transfer function (SHMS- VSTF), basing our derivation on the well-known third-order Volterra series transfer function (VSTF). We notice that when applying an approach based on a recursive method and considering the phased-array factor, the order of the expression for the transfer function grows as 3 raised to the number of considered spans. By imposing a frequency-flat approximation to the higher-order terms that are usually neglected in the commonly used VSTF approach, we are able to reduce the overall expression order to the typical third-order plus a complex correction factor. We carry on performance comparisons between the purposed SH-MS-VSTF, the well-known split-step Fourier method (SSFM), and the third-order VSTF. The SH-MS-VSTF exhibits a uniform improvement of about two orders of magnitude in the normalized mean squared deviation with respect to the other methods. This can be translated in a reduction of the overall number of steps required to fully analyze the transmission link up to 99.75% with respect to the SSFM, and 98.75% with respect to the third-order VSTF, respectively, for the same numerical accuracy

    Origin, evolution, and distribution of the molecular machinery for biosynthesis of sialylated lipooligosaccharide structures in Campylobacter coli

    Get PDF
    Campylobacter jejuni and Campylobacter coli are the most common cause of bacterial gastroenteritis worldwide. Additionally, C. jejuni is the most common bacterial etiological agent in the autoimmune Guillain-Barre syndrome (GBS). Ganglioside mimicry by C. jejuni lipooligosaccharide (LOS) is the triggering factor of the disease. LOS-associated genes involved in the synthesis and transfer of sialic acid (glycosyltranferases belonging to family GT-42) are essential in C. jejuni to synthesize ganglioside-like LOS. Despite being isolated from GBS patients, scarce genetic evidence supports C. coli role in the disease. In this study, through data mining and bioinformatics analysis, C. coli is shown to possess a larger GT-42 glycosyltransferase repertoire than C. jejuni. Although GT-42 glycosyltransferases are widely distributed in C. coli population, only a fraction of C. coli strains (1%) are very likely able to express ganglioside mimics. Even though the activity of C. coli specific GT-42 enzymes and their role in shaping the bacterial population are yet to be explored, evidence presented herein suggest that loss of function of some LOS-associated genes occurred during agriculture niche adaptation.Peer reviewe

    On the Form Factor for the Unitary Group

    Full text link
    We study the combinatorics of the contributions to the form factor of the group U(N) in the large NN limit. This relates to questions about semiclassical contributions to the form factor of quantum systems described by the unitary ensemble.Comment: 35 page

    Time domain modelling and stability analysis of complex thermoacoustic systems

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.A methodology allowing for a modular setup of complex acoustic systems is developed. The transfer behaviour of the individual subsystems is formulated in time domain. Subsystem descriptions can be obtained by analytical considerations, numerical methods, or experimental data. Once the complex subsystems have been characterized experimentally, changes in system geometry can be implemented easily by exchanging or adding subsystems. To validate the modelling approach, experiments are conducted in an acoustic test rig with a combustor-type geometry. Results are compared to predictions from the model, demonstrating accuracy in frequency and time domain. Application to thermoacoustic instabilities arising in lean-premixed combustion is given. The influence of a modified fuel distribution on an unstable operating point of a lean-premixed combustor is studied and validated with experimental data. Additionally, a study on the parameters governing the flame transfer function is performed to generate a stability map of a model combustor. An advantage of the state-space approach is that stability of a thermoacoustic system can be determined by simply solving a matrix eigenvalue problem. This is in strong contrast to the traditional approach, where the complete model is formulated in frequency domain with infinite-dimensional transfer functions. The time domain approach is based on the methodology presented by Schuermans et al. [1]. In contrast to their work, however, subsystems are not obtained from modal expansions but are characterized by using system identification techniques. Additionally, accuracy of the time domain model is verified by experiments
    • …
    corecore