8 research outputs found
FRAXE-associated mental retardation protein (FMR2) is an RNA-binding protein with high affinity for G-quartet RNA forming structure
FRAXE is a form of mild to moderate mental retardation due to the silencing of the FMR2 gene. The cellular function of FMR2 protein is presently unknown. By analogy with its homologue AF4, FMR2 was supposed to have a role in transcriptional regulation, but robust evidences supporting this hypothesis are lacking. We observed that FMR2 co-localizes with the splicing factor SC35 in nuclear speckles, the nuclear regions where splicing factors are concentrated, assembled and modified. Similarly to what was reported for splicing factors, blocking splicing or transcription leads to the accumulation of FMR2 in enlarged, rounded speckles. FMR2 is also localized in the nucleolus when splicing is blocked. We show here that FMR2 is able to specifically bind the G-quartet-forming RNA structure with high affinity. Remarkably, in vivo, in the presence of FMR2, the ESE action of the G-quartet situated in mRNA of an alternatively spliced exon of a minigene or of the putative target FMR1 appears reduced. Interestingly, FMR1 is silenced in the fragile X syndrome, another form of mental retardation. All together, our findings strongly suggest that FMR2 is an RNA-binding protein, which might be involved in alternative splicing regulation through an interaction with G-quartet RNA structure
A Novel Function for Fragile X Mental Retardation Protein in Translational Activation
Fragile X syndrome, the most frequent form of inherited mental retardation, is due to the absence of Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein involved in several steps of RNA metabolism. To date, two RNA motifs have been found to mediate FMRP/RNA interaction, the G-quartet and the “kissing complex,” which both induce translational repression in the presence of FMRP. We show here a new role for FMRP as a positive modulator of translation. FMRP specifically binds Superoxide Dismutase 1 (Sod1) mRNA with high affinity through a novel RNA motif, SoSLIP (Sod1 mRNA Stem Loops Interacting with FMRP), which is folded as three independent stem-loop structures. FMRP induces a structural modification of the SoSLIP motif upon its interaction with it. SoSLIP also behaves as a translational activator whose action is potentiated by the interaction with FMRP. The absence of FMRP results in decreased expression of Sod1. Because it has been observed that brain metabolism of FMR1 null mice is more sensitive to oxidative stress, we propose that the deregulation of Sod1 expression may be at the basis of several traits of the physiopathology of the Fragile X syndrome, such as anxiety, sleep troubles, and autism
Functional characterization of the AFF (AF4/FMR2) family of RNA-binding proteins: insights into the molecular pathology of FRAXE intellectual disability.
International audienceThe AFF (AF4/FMR2) family of genes includes four members: AFF1/AF4, AFF2/FMR2, AFF3/LAF4 and AFF4/AF5q31. AFF2/FMR2 is silenced in FRAXE intellectual disability, while the other three members have been reported to form fusion genes as a consequence of chromosome translocations with the myeloid/lymphoid or mixed lineage leukemia (MLL) gene in acute lymphoblastic leukemias (ALLs). All AFF proteins are localized in the nucleus and their role as transcriptional activators with a positive action on RNA elongation was primarily studied. We have recently shown that AFF2/FMR2 localizes to nuclear speckles, subnuclear structures considered as storage/modification sites of pre-mRNA splicing factors, and modulates alternative splicing via the interaction with the G-quadruplex RNA-forming structure. We show here that similarly to AFF2/FMR2, AFF3/LAF4 and AFF4/AF5q31 localize to nuclear speckles and are able to bind RNA, having a high apparent affinity for the G-quadruplex structure. Interestingly, AFF3/LAF4 and AFF4/AF5q31, like AFF2/FMR2, modulate, in vivo, the splicing efficiency of a mini-gene containing a G-quadruplex structure in one alternatively spliced exon. Furthermore, we observed that the overexpression of AFF2/3/4 interferes with the organization and/or biogenesis of nuclear speckles. These findings fit well with our observation that enlarged nuclear speckles are present in FRAXE fibroblasts. Furthermore, our findings suggest functional redundancy among the AFF family members in the regulation of splicing and transcription. It is possible that other members of the AFF family compensate for the loss of AFF2/FMR2 activity and as such explain the relatively mild to borderline phenotype observed in FRAXE patients