202 research outputs found

    Nuevas aportaciones sobre el retablo de Santo Domingo de Tamarite de Litera: iconografía, origen, promoción y datación

    Get PDF
    El retablo de santo Domingo de Guzmán procedente de Tamarite de Litera es uno de los ciclos más antiguos dedicados a este santo y a la vez uno de los más complejos y desconocidos. Aproximadamente un siglo después que los dominicos permitieran la representación de sus santos miembros para impulsar su culto y a la vez su Orden se realizó este complejo ciclo dedicado a su fundador. La documentación recogida y una clave de bóveda conservada "in situ" me han permitido localizar la capilla dedicada a santo Domingo en la colegiata de Tamarite de Litera donde probablemente se encontraba este retablo hasta ser sustituido y trasladado a la sacristía de la iglesia de san Miguel de la misma población donde fue encontrado. Patrocinado por alguno de los miembros de la familia Entença, como indica uno de los escudos de su marco, fue realizado en el segundo tercio del siglo XIV según la comparación estilística con otras obras de su entorno y el graffiti realizado en la figura central. Contiene algunas escenas únicas en su género solo explicables por la intervención de un teólogo que conocía perfectamente la vida de este Santo y probablemente algún manuscrito italiano que le sirvió de modelo.The altarpiece of Saint Dominic of Guzmán from Tamarite de Litera is one of the oldest cycles dedicated to this saint and at the same time one of the most complex and unknown. About a century after Dominics had allowed to represent their patron saints for stimulating their worship and their Order, it was made this complex cycle dedicated to their founder. The documentation collected and a boss preserved "in situ" has permitted me to locate saint Dominics chapel in the collegiate church of Tamarite de Litera where probably had been shown this altarpiece until it was replaced and moved to the sacristy of san Michel's church from the same village where it was found. It was sponsored for some member of the Entença's family, as it indicates one of the coats of arms that appears in its frame, it was made during the second third of XIV century, according to the comparison with other works of their environment and the graffiti made on the central figure. It contains some unique scenes in their type which only can be explained by the intervention of a theologian who knew the life of this Saint perfectly and probably some Italian manuscript which he used as a pattern

    Model Studies on the Photoreduction of the 5-Hydroxy-5,6-dihydrothymine and 5-Methyl-2-pyrimidone Moieties of (6-4) Photoproducts by Photolyase

    Full text link
    This is the peer reviewed version of the following article: Rodríguez-Muñiz, G. M., Miranda, M. A., & Lhiaubet-Vallet, V. (2022). Model Studies on the Photoreduction of the 5-Hydroxy-5, 6-dihydrothymine and 5-Methyl-2-pyrimidone Moieties of (6-4) Photoproducts by Photolyase. Photochemistry and Photobiology, 98(3), 671-677, which has been published in final form at https://doi.org/10.1111/php.13592. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Photorepair mechanism of (6-4) photoproducts (6-4PP) by photolyase has been the subject of active debate over the years. The initial rationalization based on electron transfer to an oxetane or azetidine intermediate formed upon binding to the enzyme has been questioned, and there is now a more general consensus that the lesion is directly reduced from the excited flavin cofactor. However, the accepting moiety, i.e. the 5-methyl-2-pyrimidone or 5-hydroxy-5,6-dihydrothymine, has not been fully identified yet. In this work, spectroscopic experiments have been run to determine which of the 5 '- or 3 '-base of 6-4PP is more prone to be reduced. For this aim, the two building blocks of 6-4PP were synthesized and used as electron acceptors. Instead of the short-lived photolyase cofactor, which does not provide a time window compatible with diffusion-controlled intermolecular processes, carbazole, 2-methoxynaphthalene and phenanthrene have been selected as electron donors due to their appropriate singlet lifetimes and reduction potentials. Steady-state and time-resolved fluorescence revealed that, in solution, the pyrimidone chromophore is the most easily reduced moiety. This was confirmed by transient absorption experiments consisting of quenching of the solvated electron by the two moieties of 6-4PP.This work has been supported in part by the project PGC2018-096684-B-I00 funded by Spanish Government MCIN/AEI/10.13039/501100011033/ and FEDER "Una manera de hacer Europa" and the Generalitat Valenciana (Prometeo/2017/075).Rodríguez Muñiz, GM.; Miranda Alonso, MÁ.; Lhiaubet, VL. (2022). Model Studies on the Photoreduction of the 5-Hydroxy-5,6-dihydrothymine and 5-Methyl-2-pyrimidone Moieties of (6-4) Photoproducts by Photolyase. Photochemistry and Photobiology. 98(3):671-677. https://doi.org/10.1111/php.1359267167798

    Stereoselective Fluorescence Quenching in the Electron Transfer Photooxidation of Nucleobase-Related Azetidines by Cyanoaromatics

    Get PDF
    [EN] Electron transfer involving nucleic acids and their derivatives is an important field in bioorganic chemistry, specifically in connection with its role in the photo-driven DNA damage and repair. Four-membered ring heterocyclic oxetanes and azetidines have been claimed to be the intermediates involved in the repair of DNA (6-4) photoproduct by photolyase. In this context, we examine here the redox properties of the two azetidine isomers obtained from photocycloaddition between 6-aza-1,3-dimethyluracil and cyclohexene. Steady-state and time-resolved fluorescence experiments using a series of photoreductants and photooxidants have been run to evaluate the efficiency of the electron transfer process. Analysis of the obtained quenching kinetics shows that the azetidine compounds can act as electron donors. Additionally, it appears that the cis isomer is more easily oxidized than its trans counterpart. This result is in agreement with electrochemical studies performed on both azetidine derivatives.Spanish Government (CTQ2015-70164-P, RIRAAF RETICS RD12/0013/0009, Red de Fotoquimica Biologica CTQ2015-71896-REDT, Severo Ochoa program/SEV-2012-0267 and SVP-2013-068057 for A. B. F.-R. grant) and Generalitat Valenciana (Prometeo II/2013/005) are gratefully acknowledged.Fraga-Timiraos, AB.; Rodríguez Muñiz, GM.; Peiro-Penalba, V.; Miranda Alonso, MÁ.; Lhiaubet, VL. (2016). Stereoselective Fluorescence Quenching in the Electron Transfer Photooxidation of Nucleobase-Related Azetidines by Cyanoaromatics. Molecules. 21(12). https://doi.org/10.3390/molecules21121683S2112Arnold, A. R., Grodick, M. A., & Barton, J. K. (2016). DNA Charge Transport: from Chemical Principles to the Cell. Cell Chemical Biology, 23(1), 183-197. doi:10.1016/j.chembiol.2015.11.010Jia, C., Ma, B., Xin, N., & Guo, X. (2015). Carbon Electrode–Molecule Junctions: A Reliable Platform for Molecular Electronics. Accounts of Chemical Research, 48(9), 2565-2575. doi:10.1021/acs.accounts.5b00133Beratan, D. N., Liu, C., Migliore, A., Polizzi, N. F., Skourtis, S. S., Zhang, P., & Zhang, Y. (2014). Charge Transfer in Dynamical Biosystems, or The Treachery of (Static) Images. Accounts of Chemical Research, 48(2), 474-481. doi:10.1021/ar500271dKawai, K., & Majima, T. (2013). Hole Transfer Kinetics of DNA. Accounts of Chemical Research, 46(11), 2616-2625. doi:10.1021/ar400079sSancar, A. (2003). Structure and Function of DNA Photolyase and Cryptochrome Blue-Light Photoreceptors. Chemical Reviews, 103(6), 2203-2238. doi:10.1021/cr0204348Kanvah, S., Joseph, J., Schuster, G. B., Barnett, R. N., Cleveland, C. L., & Landman, U. (2010). Oxidation of DNA: Damage to Nucleobases. Accounts of Chemical Research, 43(2), 280-287. doi:10.1021/ar900175aKelley, S. O. (1999). Electron Transfer Between Bases in Double Helical DNA. Science, 283(5400), 375-381. doi:10.1126/science.283.5400.375Breeger, S., von Meltzer, M., Hennecke, U., & Carell, T. (2006). Investigation of the Pathways of Excess Electron Transfer in DNA with Flavin-Donor and Oxetane-Acceptor Modified DNA Hairpins. Chemistry - A European Journal, 12(25), 6469-6477. doi:10.1002/chem.200600074Boussicault, F., & Robert, M. (2008). Electron Transfer in DNA and in DNA-Related Biological Processes. Electrochemical Insights. Chemical Reviews, 108(7), 2622-2645. doi:10.1021/cr0680787The Nobel Prize in Chemistry 2015—Advanced Informationhttp://www.nobelprize.org/nobel_prizes/chemistry/laureates/2015/advanced.htmlBrettel, K., & Byrdin, M. (2010). Reaction mechanisms of DNA photolyase. Current Opinion in Structural Biology, 20(6), 693-701. doi:10.1016/j.sbi.2010.07.003Dandliker, P. J. (1997). Oxidative Thymine Dimer Repair in the DNA Helix. Science, 275(5305), 1465-1468. doi:10.1126/science.275.5305.1465Vicic, D. A., Odom, D. T., Núñez, M. E., Gianolio, D. A., McLaughlin, L. W., & Barton, J. K. (2000). Oxidative Repair of a Thymine Dimer in DNA from a Distance by a Covalently Linked Organic Intercalator. Journal of the American Chemical Society, 122(36), 8603-8611. doi:10.1021/ja000280iHartman, T., & Cibulka, R. (2016). Photocatalytic Systems with Flavinium Salts: From Photolyase Models to Synthetic Tool for Cyclobutane Ring Opening. Organic Letters, 18(15), 3710-3713. doi:10.1021/acs.orglett.6b01743Scannell, M. P., Fenick, D. J., Yeh, S.-R., & Falvey, D. E. (1997). Model Studies of DNA Photorepair:  Reduction Potentials of Thymine and Cytosine Cyclobutane Dimers Measured by Fluorescence Quenching. Journal of the American Chemical Society, 119(8), 1971-1977. doi:10.1021/ja963360oPérez-Ruiz, R., Jiménez, M. C., & Miranda, M. A. (2014). Hetero-cycloreversions Mediated by Photoinduced Electron Transfer. Accounts of Chemical Research, 47(4), 1359-1368. doi:10.1021/ar4003224Boussicault, F., & Robert, M. (2006). Electrochemical Approach to the Repair of Oxetanes Mimicking DNA (6−4) Photoproducts. The Journal of Physical Chemistry B, 110(43), 21987-21993. doi:10.1021/jp062425zPrakash, G., & Falvey, D. E. (1995). Model studies of the (6-4) photoproduct DNA photolyase: Synthesis and photosensitized splitting of a thymine-5,6-oxetane. Journal of the American Chemical Society, 117(45), 11375-11376. doi:10.1021/ja00150a050Friedel, M. G., Cichon, M. K., & Carell, T. (2005). Model compounds for (6–4) photolyases: a comparative flavin induced cleavage study of oxetanes and thietanes. Organic & Biomolecular Chemistry, 3(10), 1937. doi:10.1039/b503205aFraga-Timiraos, A. B., Lhiaubet-Vallet, V., & Miranda, M. A. (2016). Repair of a Dimeric Azetidine Related to the Thymine-Cytosine (6- 4) Photoproduct by Electron Transfer Photoreduction. Angewandte Chemie International Edition, 55(20), 6037-6040. doi:10.1002/anie.201601475Andreu, I., Delgado, J., Espinós, A., Pérez-Ruiz, R., Jiménez, M. C., & Miranda, M. A. (2008). Cycloreversion of Azetidines via Oxidative Electron Transfer. Steady-State and Time-Resolved Studies. Organic Letters, 10(22), 5207-5210. doi:10.1021/ol802181uPac, C., Ohtsuki, T., Shiota, Y., Yanagida, S., & Sakurai, H. (1986). Photochemical Reactions of Aromatic Compounds. XLII. Photosensitized Reactions of Some Selected Diarylcyclobutanes by Aromatic Nitriles and Chloranil. Implications of Charge-Transfer Contributions on Exciplex Reactivities. Bulletin of the Chemical Society of Japan, 59(4), 1133-1139. doi:10.1246/bcsj.59.1133Swenton, J. S., & Hyatt, J. A. (1974). Photosensitized cycloadditions to 1,3-dimethyl-6-azauracil and 1,3-dimethyl-6-azathymine. Imine linkage unusually reactive toward photocycloaddition. Journal of the American Chemical Society, 96(15), 4879-4885. doi:10.1021/ja00822a027Scannell, M. P., Prakash, G., & Falvey, D. E. (1997). Photoinduced Electron Transfer to Pyrimidines and 5,6-Dihydropyrimidine Derivatives:  Reduction Potentials Determined by Fluorescence Quenching Kinetics. The Journal of Physical Chemistry A, 101(24), 4332-4337. doi:10.1021/jp970164aPavlishchuk, V. V., & Addison, A. W. (2000). Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C. Inorganica Chimica Acta, 298(1), 97-102. doi:10.1016/s0020-1693(99)00407-

    Influence of operating conditions on ceramic ultrafiltration membrane performance when treating textile effluents

    Get PDF
    This work studies the performance of three commercial ceramic ultrafiltration membranes (ZrO2–TiO2) treating raw effluent from a textile industry. The effect of crossflow velocity at 3, 4 and 5 m s−1 as well as membrane characteristics, such as molecular weight cut-off (30, 50 and 150 kDa), on process performance were studied. Experiments were carried out in concentration mode in order to observe the effect of volume reduction factor simultaneously. Results showed a combined influence of both crossflow velocity and molecular weight cut-off on flux performance. TOC and COD removals up to 70% and 84% respectively were reached. On the other hand, almost complete color (>97%) and turbidity (>99%) removals were achieved for all the membranes and operating conditions

    Adherence to healthy lifestyle habits is a determinant of the effectiveness of weight loss among patients undergoing endoscopic bariatric therapies

    Full text link
    Endoscopic bariatric therapies (EBTs) are promising strategies for the treatment of obesity. However, there is still great variability in its effectiveness in weight loss. Thus, we investigated whether adherence to healthy lifestyle habits is a significant determinant of weight loss effectiveness among patients undergoing EBTs. Additionally, the role of eating behaviors and psychological traits in the effectiveness of weight loss was studied. A cohort of 361 participants (81.4% women; age 41.8 ± 9.5 years; BMI 37.8 ± 4.3 kg/m2) was followed for 1 year after EBT. Anthropometric parameters, adherence to healthy lifestyle habits, emotional eating, and psychological traits (anxiety and depression) were evaluated. General linear models were used to compare outcome variables according to weight loss effectiveness groups (poor vs. good weight-loss-responders). Additionally, a hierarchical linear regression model was used to determine whether adherence to healthy lifestyle habits, emotional eating, or psychological traits were significant predictors of excess weight loss (%EWL). One year after EBT, weight loss differed significantly between good and poor weight-loss-responders (67.5% EWL [95% CI: 64.2, 70.8] vs. 28.2% EWL [95% CI: 25.5, 30.9], p 2 times/week were the two lifestyle habits that most significantly determined weight loss response. Furthermore, our results revealed that while adherence to healthy lifestyle habits was a significant determinant of %EWL 3, 6, and 12 months after EBT (p < 0.001), emotional eating was a significant determinant of %EWL only 3 and 6 months after the intervention (p < 0.01 and p < 0.05, respectively). Regarding psychological traits, we observed that neither anxiety nor depression were significant determinants of %EWL. Our results revealed that adherence to healthy lifestyle habits is a significant determinant for weight loss effectiveness among patients with obesity undergoing EBT. These findings highlight the importance of implementing an adequate nutritional intervention program, especially since patients who adhere to good lifestyle habits are able to achieve a weight loss that would be comparable with bariatric surgery

    Predictive Value of Serum Antibodies and Point Mutations of AQP4, AQP1 and MOG in A Cohort of Spanish Patients with Neuromyelitis Optica Spectrum Disorders

    Get PDF
    The detection of IgG aquaporin-4 antibodies in the serum of patients with Neuromyelitis optica (NMO) has dramatically improved the diagnosis of this disease and its distinction from multiple sclerosis. Recently, a group of patients have been described who have an NMO spectrum disorder (NMOsd) and who are seronegative for AQP4 antibodies but positive for IgG aquaporin-1 (AQP1) or myelin oligodendrocyte glycoprotein (MOG) antibodies. The purpose of this study was to determine whether AQP1 and MOG could be considered new biomarkers of this disease; and if point mutations in the gDNA of AQP4, AQP1 and MOG genes could be associated with the etiology of NMOsd. We evaluated the diagnostic capability of ELISA and cell-based assays (CBA), and analyzed their reliability, specificity, and sensitivity in detecting antibodies against these three proteins. The results showed that both assays can recognize these antigen proteins under appropriate conditions, but only anti-AQP4 antibodies, and not AQP1 or MOG, appears to be a clear biomarker for NMOsd. CBA is the best method for detecting these antibodies; and serum levels of AQP4 antibodies do not correlate with the progression of this disease. So far, the sequencing analysis has not revealed a genetic basis for the etiology of NMOsd, but a more extensive analysis is required before definitive conclusions can be drawn.Ministerio de Economía y CompetitividadFEDER (Grants PI16/01249 y PI16/00493

    "Snorkelling" vs. "diving" in mixed micelles probed by means of a molecular bathymeter

    Full text link
    [EN] A photoactive bathymeter based on a carboxylic acid moiety covalently linked to a signalling methoxynaphthalene (MNP) fluorophore has been designed to prove the concept of "snorkelling" vs. "diving" in mixed micelles (MM). The carboxylic acid "floats" on the MM surface, while the MNP unit sinks deep in MM. The rate constants of MNP fluorescence quenching by iodide, which remains basically in water, consistently decrease with increasing spacer length, revealing different regions. This is associated with the distance MNP should "dive" in MM to achieve protection from aqueous reactants. Unequivocal proof of the exergonic photoinduced electron transfer was obtained from the UV-visible spectral signature of I-3(-) upon steady-state photolysis. The applicability of the bathymeter was examined upon testing a family of MNP derivatives. The obtained results were validated by comparison with different lipophilicity tests: (i) a modified version of the K-ow partition coefficient and (ii) the retention factor on thin layer chromatography. This concept could potentially be extended to test drugs or pharmacophores exhibiting any photoactive moiety.Financial support from the Spanish Government (SEV-2016-0683), Red RETICS de Investigacion de Reacciones Adversas a Alergenos y Farmacos (RIRAAF), Instituto de Salud Carlos III (RD012/0013, RD16/0006/0030, FIS PI16/01877), VLC-Campus and the Generalitat Valenciana (Prometeo Program) is gratefully acknowledged.Rodríguez Muñiz, GM.; Gomez Mendoza, M.; Nuin Pla, NE.; Andreu Ros, MI.; Marín García, ML.; Miranda Alonso, MÁ. (2017). "Snorkelling" vs. "diving" in mixed micelles probed by means of a molecular bathymeter. Organic & Biomolecular Chemistry. 15(48):10281-10288. https://doi.org/10.1039/c7ob02595eS10281102881548Porter, C. J. H., Trevaskis, N. L., & Charman, W. N. (2007). Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nature Reviews Drug Discovery, 6(3), 231-248. doi:10.1038/nrd2197Hammad, M. ., & Müller, B. . (1998). Increasing drug solubility by means of bile salt–phosphatidylcholine-based mixed micelles. European Journal of Pharmaceutics and Biopharmaceutics, 46(3), 361-367. doi:10.1016/s0939-6411(98)00037-xNagadome, S., Numata, O., Sugihara, G., Sasaki, Y., & Igimi, H. (1995). Solubilization and precipitation of cholesterol in aqueous solution of bile salts and their mixtures. Colloid & Polymer Science, 273(7), 675-680. doi:10.1007/bf00652260Hofmann, A. F. (1999). The Continuing Importance of Bile Acids in Liver and Intestinal Disease. Archives of Internal Medicine, 159(22), 2647. doi:10.1001/archinte.159.22.2647Ding, J., Sun, Y., Li, J., Wang, H., & Mao, S. (2017). Enhanced blood–brain barrier transport of vinpocetine by oral delivery of mixed micelles in combination with a message guider. Journal of Drug Targeting, 25(6), 532-540. doi:10.1080/1061186x.2017.1289541Lasic, D. D. (1992). Mixed micelles in drug delivery. Nature, 355(6357), 279-280. doi:10.1038/355279a0Cheng, L., Kamkaew, A., Sun, H., Jiang, D., Valdovinos, H. F., Gong, H., … Cai, W. (2016). Dual-Modality Positron Emission Tomography/Optical Image-Guided Photodynamic Cancer Therapy with Chlorin e6-Containing Nanomicelles. ACS Nano, 10(8), 7721-7730. doi:10.1021/acsnano.6b03074Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1-3), 3-25. doi:10.1016/s0169-409x(96)00423-1Beaumont, K., Schmid, E., & Smith, D. A. (2005). Oral delivery of G protein-coupled receptor modulators: An explanation for the observed class difference. Bioorganic & Medicinal Chemistry Letters, 15(16), 3658-3664. doi:10.1016/j.bmcl.2005.05.042Al-Abdul-Wahid, M. S., Neale, C., Pomès, R., & Prosser, R. S. (2009). A Solution NMR Approach to the Measurement of Amphiphile Immersion Depth and Orientation in Membrane Model Systems. Journal of the American Chemical Society, 131(18), 6452-6459. doi:10.1021/ja808964eAfri, M., Frimer, A. A., & Cohen, Y. (2004). Active oxygen chemistry within the liposomal bilayer. Chemistry and Physics of Lipids, 131(1), 123-133. doi:10.1016/j.chemphyslip.2004.04.006Cohen, Y., Bodner, E., Richman, M., Afri, M., & Frimer, A. A. (2008). NMR-based molecular ruler for determining the depth of intercalants within the lipid bilayer. Chemistry and Physics of Lipids, 155(2), 98-113. doi:10.1016/j.chemphyslip.2008.07.004Cohen, Y., Afri, M., & Frimer, A. A. (2008). NMR-based molecular ruler for determining the depth of intercalants within the lipid bilayer. Chemistry and Physics of Lipids, 155(2), 114-119. doi:10.1016/j.chemphyslip.2008.07.007Afri, M., Alexenberg, C., Aped, P., Bodner, E., Cohen, S., Ejgenburg, M., … Frimer, A. A. (2014). NMR-based molecular ruler for determining the depth of intercalants within the lipid bilayer. Chemistry and Physics of Lipids, 184, 105-118. doi:10.1016/j.chemphyslip.2014.07.007Afri, M., Naqqash, M. E., & Frimer, A. A. (2011). Using fluorescence to locate intercalants within the lipid bilayer of liposomes, bioliposomes and erythrocyte ghosts. Chemistry and Physics of Lipids, 164(8), 759-765. doi:10.1016/j.chemphyslip.2011.09.002Bodner, E., Afri, M., & Frimer, A. A. (2010). Determining radical penetration into membranes using ESR splitting constants. Free Radical Biology and Medicine, 49(3), 427-436. doi:10.1016/j.freeradbiomed.2010.04.029Laguerre, M., López Giraldo, L. J., Lecomte, J., Figueroa-Espinoza, M.-C., Baréa, B., Weiss, J., … Villeneuve, P. (2009). Chain Length Affects Antioxidant Properties of Chlorogenate Esters in Emulsion: The Cutoff Theory Behind the Polar Paradox. Journal of Agricultural and Food Chemistry, 57(23), 11335-11342. doi:10.1021/jf9026266Laguerre, M., López Giraldo, L. J., Lecomte, J., Figueroa-Espinoza, M.-C., Baréa, B., Weiss, J., … Villeneuve, P. (2010). Relationship between Hydrophobicity and Antioxidant Ability of «Phenolipids» in Emulsion: A Parabolic Effect of the Chain Length of Rosmarinate Esters. Journal of Agricultural and Food Chemistry, 58(5), 2869-2876. doi:10.1021/jf904119vAliaga, C., Bravo-Moraga, F., Gonzalez-Nilo, D., Márquez, S., Lühr, S., Mena, G., & Rezende, M. C. (2016). Location of TEMPO derivatives in micelles: subtle effect of the probe orientation. Food Chemistry, 192, 395-401. doi:10.1016/j.foodchem.2015.07.036Aliaga, C., López de Arbina, A., & Rezende, M. C. (2016). «Cut-off» effect of antioxidants and/or probes of variable lipophilicity in microheterogeneous media. Food Chemistry, 206, 119-123. doi:10.1016/j.foodchem.2016.03.024Lopez de Arbina, A., Rezende, M. C., & Aliaga, C. (2017). Cut-off effect of radical TEMPO derivatives in olive oil-in-water emulsions. Food Chemistry, 224, 342-346. doi:10.1016/j.foodchem.2016.12.058Agostinis, P., Berg, K., Cengel, K. A., Foster, T. H., Girotti, A. W., Gollnick, S. O., … Golab, J. (2011). Photodynamic therapy of cancer: An update. CA: A Cancer Journal for Clinicians, 61(4), 250-281. doi:10.3322/caac.20114Kamkaew, A., Lim, S. H., Lee, H. B., Kiew, L. V., Chung, L. Y., & Burgess, K. (2013). BODIPY dyes in photodynamic therapy. Chem. Soc. Rev., 42(1), 77-88. doi:10.1039/c2cs35216hYano, S., Hirohara, S., Obata, M., Hagiya, Y., Ogura, S., Ikeda, A., … Joh, T. (2011). Current states and future views in photodynamic therapy. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 12(1), 46-67. doi:10.1016/j.jphotochemrev.2011.06.001Dolmans, D. E. J. G. J., Fukumura, D., & Jain, R. K. (2003). Photodynamic therapy for cancer. Nature Reviews Cancer, 3(5), 380-387. doi:10.1038/nrc1071Bronshtein, I., Afri, M., Weitman, H., Frimer, A. A., Smith, K. M., & Ehrenberg, B. (2004). Porphyrin Depth in Lipid Bilayers as Determined by Iodide and Parallax Fluorescence Quenching Methods and Its Effect on Photosensitizing Efficiency. Biophysical Journal, 87(2), 1155-1164. doi:10.1529/biophysj.104.041434Lavi, A., Weitman, H., Holmes, R. T., Smith, K. M., & Ehrenberg, B. (2002). The Depth of Porphyrin in a Membrane and the Membrane’s Physical Properties Affect the Photosensitizing Efficiency. Biophysical Journal, 82(4), 2101-2110. doi:10.1016/s0006-3495(02)75557-4Chattopadhyay, A., & London, E. (1987). Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids. Biochemistry, 26(1), 39-45. doi:10.1021/bi00375a006Nuin, E., Gómez-Mendoza, M., Andreu, I., Marin, M. L., & Miranda, M. A. (2012). New Photoactive Compounds To Probe Cholic Acid and Cholesterol inside Mixed Micelles. Organic Letters, 15(2), 298-301. doi:10.1021/ol303201yNuin, E., Gomez-Mendoza, M., Marin, M. L., Andreu, I., & Miranda, M. A. (2013). Influence of Drug Encapsulation within Mixed Micelles on the Excited State Dynamics and Accessibility to Ionic Quenchers. The Journal of Physical Chemistry B, 117(32), 9327-9332. doi:10.1021/jp404353uGomez-Mendoza, M., Nuin, E., Andreu, I., Marin, M. L., & Miranda, M. A. (2012). Photophysical Probes To Assess the Potential of Cholic Acid Aggregates as Drug Carriers. The Journal of Physical Chemistry B, 116(34), 10213-10218. doi:10.1021/jp304708yBoschloo, G., & Hagfeldt, A. (2009). Characteristics of the Iodide/Triiodide Redox Mediator in Dye-Sensitized Solar Cells. Accounts of Chemical Research, 42(11), 1819-1826. doi:10.1021/ar900138mGardner, J. M., Abrahamsson, M., Farnum, B. H., & Meyer, G. J. (2009). Visible Light Generation of Iodine Atoms and I−I Bonds: Sensitized I−Oxidation and I3−Photodissociation. Journal of the American Chemical Society, 131(44), 16206-16214. doi:10.1021/ja905021cSangster, J. (1989). Octanol‐Water Partition Coefficients of Simple Organic Compounds. Journal of Physical and Chemical Reference Data, 18(3), 1111-1229. doi:10.1063/1.55583

    Delay Discounting in Gambling Disorder: Implications in Treatment Outcome

    Get PDF
    Impulsive choice, measured by delay discounting (DD) tasks, has been shown in patients with gambling disorders (GD). However, the impact of DD and treatment outcome has been scarcely explored in GD patients. The aims of this study were: (1) to examine the baseline association between DD and clinical variables in GD patients depending on their age and gambling preferences (strategic vs. non-strategic); and (2) to estimate the predictive role of DD on poorer outcomes of cognitive-behavioral therapy (CBT) when considering also the effect of other clinical variables. 133 treatment-seeking male GD patients were evaluated at baseline with a DD task and measures of GD severity, personality traits and psychopathology. Treatment outcome was measured in terms of dropout from CBT and relapses. Results showed baseline associations between DD and GD severity (correlation coefficient R = 0.408 among strategic gamblers and R = 0.279 among mixed gamblers) and between DD and positive/negative urgency (R = 0.330 for the youngest patients, R = 0.244 for middle age, and around R = 0.35 for gamblers who reported preferences for strategic games). Other personality traits such as high harm avoidance and low cooperativeness were also related to DD at baseline (R = 0.606 among strategic gamblers). Regarding treatment outcome, a steeper discount rate predicted a higher risk of relapses in strategic gamblers (odds ratio OR = 3.01) and middle-age ones (OR = 1.59), and a higher risk of dropout in younger gamblers (OR = 1.89), non-strategic gamblers (OR = 1.70) and mixed gamblers (R = 4.74). GD severity mediated the associations between age, DD, personality traits and poor CBT outcome. In conclusion, impulsive choice affects treatment response in individuals with GD and may interfere with it to a significant extent. Considering DD in GD, patients seeking treatment could help control its impact on treatment adherence and relapses

    Experimental and Theoretical Study on the Cycloreversion of a Nucleobase-Derived Azetidine by Photoinduced Electron Transfer

    Full text link
    [EN] Azetidines are interesting compounds in medicine and chemistry as bioactive scaffolds and synthetic intermediates. However, photochemical processes involved in the generation and fate of azetidine-derived radical ions have scarcely been reported. In this context, the photoreduction of this four-membered heterocycle might be relevant in connection with the DNA (6-4) photoproduct obtained from photolyase. Herein, a stable azabipyrimidinic azetidine (AZT(m)), obtained from cycloaddition between thymine and 6-azauracil units, is considered to be an interesting model of the proposed azetidine-like intermediate. Hence, its photoreduction and photo-oxidation are thoroughly investigated through a multifaceted approach, including spectroscopic, analytical, and electrochemical studies, complemented by CASPT2 and DFT calculations. Both injection and removal of an electron result in the formation of radical ions, which evolve towards repaired thymine and azauracil units. Whereas photoreduction energetics are similar to those of the cyclobutane thymine dimers, photo-oxidation is clearly more favorable in the azetidine. Ring opening occurs with relatively low activation barriers (< 13 kcal mol(-1)) and the process is clearly exergonic for photoreduction. In general, a good correlation has been observed between the experimental results and theoretical calculations, which has allowed a synergic understanding of the phenomenon.The Spanish Government (CTQ2015-70164-P, CTQ2017-87054-C2-2-P, SVP-2013-068057 grants to A.B.F.-R. and RYC-2015-19234 grant to D.R.-S.) and the Valencia Regional Government (Prometeo/2017/075) are acknowledged for financial support. A.F.-M. is grateful to the Region Grand Est government (France) and the Universite de Lorraine for their financial support.Fraga-Timiraos, AB.; Francés-Monerris, A.; Rodríguez Muñiz, GM.; Navarrete-Miguel, M.; Miranda Alonso, MÁ.; Roca Sanjuan, D.; Lhiaubet, VL. (2018). Experimental and Theoretical Study on the Cycloreversion of a Nucleobase-Derived Azetidine by Photoinduced Electron Transfer. Chemistry - A European Journal. 24(57):15346-15354. https://doi.org/10.1002/chem.201803298S15346153542457Antermite, D., Degennaro, L., & Luisi, R. (2017). Recent advances in the chemistry of metallated azetidines. Organic & Biomolecular Chemistry, 15(1), 34-50. doi:10.1039/c6ob01665kCanu, N., Belin, P., Thai, R., Correia, I., Lequin, O., Seguin, J., … Gondry, M. (2018). Incorporation of Non-canonical Amino Acids into 2,5-Diketopiperazines by Cyclodipeptide Synthases. Angewandte Chemie International Edition, 57(12), 3118-3122. doi:10.1002/anie.201712536Canu, N., Belin, P., Thai, R., Correia, I., Lequin, O., Seguin, J., … Gondry, M. (2018). Incorporation of Non-canonical Amino Acids into 2,5-Diketopiperazines by Cyclodipeptide Synthases. Angewandte Chemie, 130(12), 3172-3176. doi:10.1002/ange.201712536Meyer, F. (2016). Trifluoromethyl nitrogen heterocycles: synthetic aspects and potential biological targets. Chemical Communications, 52(15), 3077-3094. doi:10.1039/c5cc09414cBrandi, A., Cicchi, S., & Cordero, F. M. (2008). Novel Syntheses of Azetidines and Azetidinones. Chemical Reviews, 108(9), 3988-4035. doi:10.1021/cr800325eCarreira, E. M., & Fessard, T. C. (2014). Four-Membered Ring-Containing Spirocycles: Synthetic Strategies and Opportunities. Chemical Reviews, 114(16), 8257-8322. doi:10.1021/cr500127bLopchuk, J. M., Fjelbye, K., Kawamata, Y., Malins, L. R., Pan, C.-M., Gianatassio, R., … Baran, P. S. (2017). Strain-Release Heteroatom Functionalization: Development, Scope, and Stereospecificity. Journal of the American Chemical Society, 139(8), 3209-3226. doi:10.1021/jacs.6b13229Hameed, A., Javed, S., Noreen, R., Huma, T., Iqbal, S., Umbreen, H., … Farooq, T. (2017). Facile and Green Synthesis of Saturated Cyclic Amines. Molecules, 22(10), 1691. doi:10.3390/molecules22101691Mehra, V., Lumb, I., Anand, A., & Kumar, V. (2017). Recent advances in synthetic facets of immensely reactive azetidines. RSC Adv., 7(72), 45763-45783. doi:10.1039/c7ra08884aKumarasamy, E., Kandappa, S. K., Raghunathan, R., Jockusch, S., & Sivaguru, J. (2017). Realizing an Aza Paternò-Büchi Reaction. Angewandte Chemie International Edition, 56(25), 7056-7061. doi:10.1002/anie.201702273Kumarasamy, E., Kandappa, S. K., Raghunathan, R., Jockusch, S., & Sivaguru, J. (2017). Realizing an Aza Paternò-Büchi Reaction. Angewandte Chemie, 129(25), 7162-7167. doi:10.1002/ange.201702273Schmid, S. C., Guzei, I. A., & Schomaker, J. M. (2017). A Stereoselective [3+1] Ring Expansion for the Synthesis of Highly Substituted Methylene Azetidines. Angewandte Chemie International Edition, 56(40), 12229-12233. doi:10.1002/anie.201705202Schmid, S. C., Guzei, I. A., & Schomaker, J. M. (2017). A Stereoselective [3+1] Ring Expansion for the Synthesis of Highly Substituted Methylene Azetidines. Angewandte Chemie, 129(40), 12397-12401. doi:10.1002/ange.201705202Diethelm, S., & Carreira, E. M. (2015). Total Synthesis of Gelsemoxonine through a Spirocyclopropane Isoxazolidine Ring Contraction. Journal of the American Chemical Society, 137(18), 6084-6096. doi:10.1021/jacs.5b02574Glawar, A. F. G., Jenkinson, S. F., Thompson, A. L., Nakagawa, S., Kato, A., Butters, T. D., & Fleet, G. W. J. (2013). 3-Hydroxyazetidine Carboxylic Acids: Non-Proteinogenic Amino Acids for Medicinal Chemists. ChemMedChem, 8(4), 658-666. doi:10.1002/cmdc.201200541Kagiyama, I., Kato, H., Nehira, T., Frisvad, J. C., Sherman, D. H., Williams, R. M., & Tsukamoto, S. (2015). Taichunamides: Prenylated Indole Alkaloids from Aspergillus taichungensis (IBT 19404). Angewandte Chemie International Edition, 55(3), 1128-1132. doi:10.1002/anie.201509462Kagiyama, I., Kato, H., Nehira, T., Frisvad, J. C., Sherman, D. H., Williams, R. M., & Tsukamoto, S. (2015). Taichunamides: Prenylated Indole Alkaloids from Aspergillus taichungensis (IBT 19404). Angewandte Chemie, 128(3), 1140-1144. doi:10.1002/ange.201509462Kato, N., Comer, E., Sakata-Kato, T., Sharma, A., Sharma, M., Maetani, M., … Corey, V. (2016). Diversity-oriented synthesis yields novel multistage antimalarial inhibitors. Nature, 538(7625), 344-349. doi:10.1038/nature19804Wang, X., Liu, C., Zeng, X., Wang, X., Wang, X., & Hu, Y. (2017). Ruthenium-Catalyzed Synthesis of Fused Tricyclic 1H-2,3-Dihydropyrimido[1,2-a]quinolines in One Step. Organic Letters, 19(13), 3378-3381. doi:10.1021/acs.orglett.7b01330Sarazen, M. L., & Jones, C. W. (2017). Insights into Azetidine Polymerization for the Preparation of Poly(propylenimine)-Based CO2 Adsorbents. Macromolecules, 50(23), 9135-9143. doi:10.1021/acs.macromol.7b02402Schnitzer, T., & Wennemers, H. (2017). Influence of theTrans/CisConformer Ratio on the Stereoselectivity of Peptidic Catalysts. Journal of the American Chemical Society, 139(43), 15356-15362. doi:10.1021/jacs.7b06194Kaiser, A., Mayer, K. K., Sellmer, A., & Wiegrebe, W. (2003). Electron Impact Induced Fragmentation of Aromatic Alkoxyimines II [5]. Formation and Transformation of Heterocyclic Radical Cations in the Gas Phase a. Monatshefte f�r Chemie / Chemical Monthly, 134(3), 343-354. doi:10.1007/s00706-002-0485-8Andreu, I., Delgado, J., Espinós, A., Pérez-Ruiz, R., Jiménez, M. C., & Miranda, M. A. (2008). Cycloreversion of Azetidines via Oxidative Electron Transfer. Steady-State and Time-Resolved Studies. Organic Letters, 10(22), 5207-5210. doi:10.1021/ol802181uFraga-Timiraos, A. B., Lhiaubet-Vallet, V., & Miranda, M. A. (2016). Repair of a Dimeric Azetidine Related to the Thymine-Cytosine (6- 4) Photoproduct by Electron Transfer Photoreduction. Angewandte Chemie International Edition, 55(20), 6037-6040. doi:10.1002/anie.201601475Fraga-Timiraos, A. B., Lhiaubet-Vallet, V., & Miranda, M. A. (2016). Repair of a Dimeric Azetidine Related to the Thymine-Cytosine (6- 4) Photoproduct by Electron Transfer Photoreduction. Angewandte Chemie, 128(20), 6141-6144. doi:10.1002/ange.201601475Fraga-Timiraos, A., Rodríguez-Muñiz, G., Peiro-Penalba, V., Miranda, M., & Lhiaubet-Vallet, V. (2016). Stereoselective Fluorescence Quenching in the Electron Transfer Photooxidation of Nucleobase-Related Azetidines by Cyanoaromatics. Molecules, 21(12), 1683. doi:10.3390/molecules21121683Pérez-Ruiz, R., Jiménez, M. C., & Miranda, M. A. (2014). Hetero-cycloreversions Mediated by Photoinduced Electron Transfer. Accounts of Chemical Research, 47(4), 1359-1368. doi:10.1021/ar4003224Leo, E. A., Domingo, L. R., Miranda, M. A., & Tormos, R. (2006). Photogeneration and Reactivity of 1,n-Diphenyl-1,n-azabiradicals. The Journal of Organic Chemistry, 71(12), 4439-4444. doi:10.1021/jo0601967Cichon, M. K., Arnold, S., & Carell, T. (2002). A (6-4) Photolyase Model: Repair of DNA (6-4) Lesions Requires a Reduced and Deprotonated Flavin This work was supported by the Volkswagen Foundation, the Fonds der Chemischen Industry, and the Bundesministerium für Bildung und Forschung (BMBF: Neue Medien in der Bildung). Angewandte Chemie International Edition, 41(5), 767. doi:10.1002/1521-3773(20020301)41:53.0.co;2-bCichon, M. K., Arnold, S., & Carell, T. (2002). A (6-4) Photolyase Model: Repair of DNA (6-4) Lesions Requires a Reduced and Deprotonated Flavin. Angewandte Chemie, 114(5), 793-796. doi:10.1002/1521-3757(20020301)114:53.0.co;2-wPrakash, G., & Falvey, D. E. (1995). Model studies of the (6-4) photoproduct DNA photolyase: Synthesis and photosensitized splitting of a thymine-5,6-oxetane. Journal of the American Chemical Society, 117(45), 11375-11376. doi:10.1021/ja00150a050Joseph, A., & Falvey, D. E. (2002). Photoinduced electron transfer cleavage of oxetane adducts of uracil and cytosine. Photochemical & Photobiological Sciences, 1(9), 632-635. doi:10.1039/b201740gTrzcionka, J., Lhiaubet-Vallet, V., Paris, C., Belmadoui, N., Climent, M. J., & Miranda, M. A. (2007). Model Studies on a Carprofen Derivative as Dual Photosensitizer for Thymine Dimerization and (6–4) Photoproduct Repair. ChemBioChem, 8(4), 402-407. doi:10.1002/cbic.200600394Wu, Q.-Q., & Song, Q.-H. (2010). Photosensitized Splitting of Thymine Dimer or Oxetane Unit by a CovalentlyN-Linked Carbazole via Electron Transfer in Different Marcus Regions. The Journal of Physical Chemistry B, 114(30), 9827-9832. doi:10.1021/jp1035579Pérez-Ruiz, R., Miranda, M. A., Alle, R., Meerholz, K., & Griesbeck, A. G. (2006). An efficient carbonyl-alkene metathesis of bicyclic oxetanes: photoinduced electron transfer reduction of the Paternò–Büchi adducts from 2,3-dihydrofuran and aromatic aldehydes. Photochem. Photobiol. Sci., 5(1), 51-55. doi:10.1039/b513875bIzquierdo, M. A., Domingo, L. R., & Miranda, M. A. (2005). Theoretical Calculations on the Cycloreversion of Oxetane Radical Cations. The Journal of Physical Chemistry A, 109(11), 2602-2607. doi:10.1021/jp045832oMiranda, M. A., & Izquierdo, M. A. (2003). Chemical and transient spectroscopic evidence for C2–C3 cleavage of 2,3-diaryloxetane radical cations. Chemical Communications, (3), 364-365. doi:10.1039/b209500aMiranda, M. A., & Izquierdo, M. A. (2002). Stepwise Cycloreversion of Oxetane Radical Cations with Initial C−O Bond Cleavage. Journal of the American Chemical Society, 124(23), 6532-6533. doi:10.1021/ja025697yPérez-Ruiz, R., Sáez, J. A., Domingo, L. R., Jiménez, M. C., & Miranda, M. A. (2012). Oxetane Ring Enlargement through Nucleophilic Trapping of Radical Cations by Acetonitrile. Organic Letters, 14(22), 5700-5703. doi:10.1021/ol302717sGlas, A. F., Schneider, S., Maul, M. J., Hennecke, U., & Carell, T. (2009). Crystal Structure of the T(6-4)C Lesion in Complex with a (6-4) DNA Photolyase and Repair of UV-Induced (6-4) and Dewar Photolesions. Chemistry - A European Journal, 15(40), 10387-10396. doi:10.1002/chem.200901004Maul, M. J., Barends, T. R. M., Glas, A. F., Cryle, M. J., Domratcheva, T., Schneider, S., … Carell, T. (2008). Crystal Structure and Mechanism of a DNA (6-4) Photolyase. Angewandte Chemie International Edition, 47(52), 10076-10080. doi:10.1002/anie.200804268Maul, M. J., Barends, T. R. M., Glas, A. F., Cryle, M. J., Domratcheva, T., Schneider, S., … Carell, T. (2008). Röntgenkristallstruktur und Mechanismus der DNA-(6-4)-Photolyase. Angewandte Chemie, 120(52), 10230-10234. doi:10.1002/ange.200804268Faraji, S., & Dreuw, A. (2017). Insights into Light-driven DNA Repair by Photolyases: Challenges and Opportunities for Electronic Structure Theory. Photochemistry and Photobiology, 93(1), 37-50. doi:10.1111/php.12679Yamamoto, J., Plaza, P., & Brettel, K. (2017). Repair of (6-4) Lesions in DNA by (6-4) Photolyase: 20 Years of Quest for the Photoreaction Mechanism. Photochemistry and Photobiology, 93(1), 51-66. doi:10.1111/php.12696Zhang, M., Wang, L., & Zhong, D. (2017). Photolyase: Dynamics and Mechanisms of Repair of Sun-Induced DNA Damage. Photochemistry and Photobiology, 93(1), 78-92. doi:10.1111/php.12695Faraji, S., Zhong, D., & Dreuw, A. (2016). Characterization of the Intermediate in and Identification of the Repair Mechanism of (6- 4) Photolesions by Photolyases. Angewandte Chemie International Edition, 55(17), 5175-5178. doi:10.1002/anie.201511950Faraji, S., Zhong, D., & Dreuw, A. (2016). Characterization of the Intermediate in and Identification of the Repair Mechanism of (6- 4) Photolesions by Photolyases. Angewandte Chemie, 128(17), 5261-5264. doi:10.1002/ange.201511950Sancar, A. (2003). Structure and Function of DNA Photolyase and Cryptochrome Blue-Light Photoreceptors. Chemical Reviews, 103(6), 2203-2238. doi:10.1021/cr0204348Yamamoto, J., Martin, R., Iwai, S., Plaza, P., & Brettel, K. (2013). Repair of the (6-4) Photoproduct by DNA Photolyase Requires Two Photons. Angewandte Chemie International Edition, 52(29), 7432-7436. doi:10.1002/anie.201301567Yamamoto, J., Martin, R., Iwai, S., Plaza, P., & Brettel, K. (2013). Repair of the (6-4) Photoproduct by DNA Photolyase Requires Two Photons. Angewandte Chemie, 125(29), 7580-7584. doi:10.1002/ange.201301567Scannell, M. P., Fenick, D. J., Yeh, S.-R., & Falvey, D. E. (1997). Model Studies of DNA Photorepair:  Reduction Potentials of Thymine and Cytosine Cyclobutane Dimers Measured by Fluorescence Quenching. Journal of the American Chemical Society, 119(8), 1971-1977. doi:10.1021/ja963360oYeh, S. R., & Falvey, D. E. (1992). Model studies of DNA photorepair: energetic requirements for the radical anion mechanism determined by fluorescence quenching. Journal of the American Chemical Society, 114(18), 7313-7314. doi:10.1021/ja00044a063Pac, C., Ohtsuki, T., Shiota, Y., Yanagida, S., & Sakurai, H. (1986). Photochemical Reactions of Aromatic Compounds. XLII. Photosensitized Reactions of Some Selected Diarylcyclobutanes by Aromatic Nitriles and Chloranil. Implications of Charge-Transfer Contributions on Exciplex Reactivities. Bulletin of the Chemical Society of Japan, 59(4), 1133-1139. doi:10.1246/bcsj.59.1133Boussicault, F., Krüger, O., Robert, M., & Wille, U. (2004). Dissociative electron transfer to and from pyrimidine cyclobutane dimers: An electrochemical study. Org. Biomol. Chem., 2(19), 2742-2750. doi:10.1039/b406923dBoussicault, F., & Robert, M. (2008). Electron Transfer in DNA and in DNA-Related Biological Processes. Electrochemical Insights. Chemical Reviews, 108(7), 2622-2645. doi:10.1021/cr0680787Wenska, G., & Paszyc, S. (1990). Electron-acceptor-sensitized splitting of cyclobutane-type thymine dimers. Journal of Photochemistry and Photobiology B: Biology, 8(1), 27-37. doi:10.1016/1011-1344(90)85185-yFenick, D. J., Carr, H. S., & Falvey, D. E. (1995). Synthesis and Photochemical Cleavage of Cis-Syn Pyrimidine Cyclobutane Dimer Analogs. The Journal of Organic Chemistry, 60(3), 624-631. doi:10.1021/jo00108a026Pac, C., Miyamoto, I., Masaki, Y., Furusho, S., Yanagida, S., Ohno, T., & Yoshimura, A. (1990). CHLORANIL-PHOTOSENSITIZED MONOMERIZATION OF DIMETHYLTHYMINE CYCLOBUTANE DIMERS and EFFECT OF MAGNESIUM PERCHLORATE. Photochemistry and Photobiology, 52(5), 973-979. doi:10.1111/j.1751-1097.1990.tb01813.xNguyen, K. V., & Burrows, C. J. (2011). A Prebiotic Role for 8-Oxoguanosine as a Flavin Mimic in Pyrimidine Dimer Photorepair. Journal of the American Chemical Society, 133(37), 14586-14589. doi:10.1021/ja2072252Behrens, C., & Carell, T. (2003). Excess electron transfer in flavin-capped, thymine dimer-containing DNA hairpins. Chemical Communications, (14), 1632. doi:10.1039/b303805jCamp, J. R., Young, T., Hartman, R. F., & Rose, S. D. (1987). PHOTOSENSITIZATION OF PYRIMIDINE DIMER SPLITTING BY A COVALENTLY BOUND INDOLE. Photochemistry and Photobiology, 45(3), 365-370. doi:10.1111/j.1751-1097.1987.tb05388.xFrancés-Monerris, A., Segarra-Martí, J., Merchán, M., & Roca-Sanjuán, D. (2015). Complete-active-space second-order perturbation theory (CASPT2//CASSCF) study of the dissociative electron attachment in canonical DNA nucleobases caused by low-energy electrons (0-3 eV). The Journal of Chemical Physics, 143(21), 215101. doi:10.1063/1.4936574González-Ramírez, I., Segarra-Martí, J., Serrano-Andrés, L., Merchán, M., Rubio, M., & Roca-Sanjuán, D. (2012). On the N1–H and N3–H Bond Dissociation in Uracil by Low Energy Electrons: A CASSCF/CASPT2 Study. Journal of Chemical Theory and Computation, 8(8), 2769-2776. doi:10.1021/ct300153fRoca-Sanjuán, D., Merchán, M., Serrano-Andrés, L., & Rubio, M. (2008). Ab initio determination of the electron affinities of DNA and RNA nucleobases. The Journal of Chemical Physics, 129(9), 095104. doi:10.1063/1.2958286Durbeej, B., & Eriksson, L. A. (2000). Thermodynamics of the Photoenzymic Repair Mechanism Studied by Density Functional Theory. Journal of the American Chemical Society, 122(41), 10126-10132. doi:10.1021/ja000929jAparici-Espert, I., Garcia-Lainez, G., Andreu, I., Miranda, M. A., & Lhiaubet-Vallet, V. (2018). Oxidatively Generated Lesions as Internal Photosensitizers for Pyrimidine Dimerization in DNA. ACS Chemical Biology, 13(3), 542-547. doi:10.1021/acschembio.7b01097Pavlishchuk, V. V., & Addison, A. W. (2000). Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C. Inorganica Chimica Acta, 298(1), 97-102. doi:10.1016/s0020-1693(99)00407-7Zhao, Y., & Truhlar, D. G. (2007). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120(1-3), 215-241. doi:10.1007/s00214-007-0310-xGaussian 09 Revision D.01 M. J. Frisch G. W. Trucks H. B. Schlegel G. E. Scuseria M. A. Robb J. R. Cheeseman G. Scalmani V. Barone G. A. Petersson H. Nakatsuji X. Li M. Caricato A. Marenich J. Bloino R. Janesko R. Gomperts B. Menucci H. P. Hratchian J. V. Ortiz A. F. Izmaylov D. Sonnenberg F. Williams-Young F. Ding F. Lipparini F. Edigi J. Goings B. Peng A. Petrone T. Henderson D. Ranasinghe V. G. Zakrzewski J. Gao N. Rega W. Zheng W. Liang M. Hada M. Ehara K. Toyota R. Fukuda M. Hasegawa T. Ishida T. Nakajima Y. Honda O. Kitao H. Nakai T. Vreven K. Throssell M. J. J. A. J. E. Peralta F. Ogliaro M. Bearpark J. J. Heyd E. Brothers K. N. Kudin V. N. Staroverov T. Keith R. Kobayashi J. Normand K. Raghavachari A. Rendell J. C. Burant S. S. Iyengar J. Tomasi M. Cossi J. M. Millam M. Klene C. Adamo R. Cammi J. W. Ochterski R. L. Martin K. Morokuma O. Farkas J. B. Foresman D. J. Fox Wallingford CT 2013.Aranda, J., Francés-Monerris, A., Tuñón, I., & Roca-Sanjuán, D. (2017). Regioselectivity of the OH Radical Addition to Uracil in Nucleic Acids. A Theoretical Approach Based on QM/MM Simulations. Journal of Chemical Theory and Computation, 13(10), 5089-5096. doi:10.1021/acs.jctc.7b00610Francés-Monerris, A., Merchán, M., & Roca-Sanjuán, D. (2014). Theoretical Study of the Hydroxyl Radical Addition to Uracil and Photochemistry of the Formed U6OH•Adduct. The Journal of Physical Chemistry B, 118(11), 2932-2939. doi:10.1021/jp412347kFrancés-Monerris, A., Merchán, M., & Roca-Sanjuán, D. (2016). Mechanism of the OH Radical Addition to Adenine from Quantum-Chemistry Determinations of Reaction Paths and Spectroscopic Tracking of the Intermediates. The Journal of Organic Chemistry, 82(1), 276-288. doi:10.1021/acs.joc.6b02393Isayev, O., Gorb, L., & Leszczynski, J. (2007). Theoretical calculations: Can Gibbs free energy for intermolecular complexes be predicted efficiently and accurately? Journal of Computational Chemistry, 28(9), 1598-1609. doi:10.1002/jcc.20696Andersson, K., Malmqvist, P., & Roos, B. O. (1992). Second‐order perturbation theory with a complete active space self‐consistent field reference function. The Journal of Chemical Physics, 96(2), 1218-1226. doi:10.1063/1.462209Roca-Sanjuán, D., Aquilante, F., & Lindh, R. (2011). Multiconfiguration second-order perturbation theory approach to strong electron correlation in chemistry and photochemistry. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2(4), 585-603. doi:10.1002/wcms.97Forsberg, N., & Malmqvist, P.-Å. (1997). Multiconfiguration perturbation theory with imaginary level shift. Chemical Physics Letters, 274(1-3), 196-204. doi:10.1016/s0009-2614(97)00669-6Ghigo, G., Roos, B. O., & Malmqvist, P.-Å. (2004). A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2). Chemical Physics Letters, 396(1-3), 142-149. doi:10.1016/j.cplett.2004.08.032Roca-Sanjuán, D., Rubio, M., Merchán, M., & Serrano-Andrés, L. (2006). Ab initiodetermination of the ionization potentials of DNA and RNA nucleobases. The Journal of Chemical Physics, 125(8), 084302. doi:10.1063/1.2336217Aquilante, F., Autschbach, J., Carlson, R. K., Chibotaru, L. F., Delcey, M. G., De Vico, L., … Lindh, R. (2015). Molcas8: New capabilities for multiconfigurational quantum chemical

    Evaluation of quality and aroma production in Golden Reinders apples after ULO-controlled atmosphere storage

    Get PDF
    [SPA] El almacenamiento de manzanas en atmósferas controladas (AC) con muy bajos niveles de oxígeno (“ultra low oxygen”, ULO) permite mantener mejor la calidad estándar que en frío normal (FN). Sin embargo, éstas atmósferas ULO pueden provocar una reducción en los compuestos aromáticos de los frutos. Para conseguir una regeneración aromática, en el presente trabajo se aplicó un periodo adicional de permanencia en FN después del almacenamiento en ULO. Se recolectaron en 2 fechas manzanas Golden Reinders de la zona de Lleida (España). Los frutos se almacenaron (a 1 ºC y 93% HR) durante 4 meses en 4 condiciones: FN (21% O2+0,03 %CO2); ULO (1% O2+1%CO2); ULO más 15 días en FN (ULO+15); y ULO más 30 días en FN (ULO+30). Después de 1 y 7 días (a 20 ºC) tras el almacenamiento, se determinaron los parámetros de calidad estándar, la producción de compuestos volátiles aromáticos, y la aceptación sensorial por parte de un panel de consumidores. Con respecto a los parámetros de calidad, no hubo diferencias significativas entre los distintos tratamientos (ULO, ULO+15 y ULO+30), por lo que se concluye que el período adicional en FN no afecta negativamente a la calidad estándar. La permanencia en FN tras 4 meses en ULO permitió aumentar la concentración de la mayoría de los esteres emitidos tras 7 días a 20ºC (en el caso de la cosecha 1). En el caso de la cosecha 2, las muestras del tratamiento ULO+15 fueron más preferidas que las correspondientes a los otros tratamientos. En el caso de la cosecha 1, la aceptación era igual para todos los tres tratamientos. Finalmente, se comprobó que la aceptación de las manzanas por parte del consumidor se vio principalmente influenciada por el contenido de sólidos solubles, la acidez y la concentración de ésteres de 2-metilpropilo. [ENG] The storage of apples in controlled atmospheres (AC) with very low levels of oxygen (“ultra low oxygen”, ULO) allows maintaining a better standard quality of fruits in comparison with the storage in normal cold atmosphere (AIR). However, this technology can produce a reduction in the aromatic compounds emitted by the fruits. With the aim of improve this aspect, in this work was studied an additional period of AIR after ULO storage to evaluate the regeneration of aroma compounds. Golden Reinders apples were harvested at 2 dates in the zone of Lleida (NE Spain). The fruits were stored (1 ºC and 93 % relative humidity) for 4 months in four different conditions: AIR (21% O2+0.03 %CO2); ULO (1% O2+1%CO2); ULO plus 15 days in AIR (ULO+15); and ULO plus 30 days in AIR (ULO+30). After 1 and 7 days (at 20 ºC) after the storage, the fruits were analyzed and it was determined the standard quality parameters (soluble solids, titratable acidity, flesh firmness, and epidermis color), the production of aroma volatile compounds, and sensorial acceptance by a consumers panel (hedonic test). From the results, it is shown that the standard quality parameters didn’t present significant differences for the different treatments (ULO, ULO+15 and ULO+30). Therefore, it implies that the additional period in AIR conditions after ULO storage doesn’t affect them. In relation to aroma compounds, for the first harvest, this additional period increased the amount in almost all esters families after 7 days of shelf-life. For the second harvest, fruits stored in ULO+15 had the highest consumer’s acceptance. For the first harvest, this acceptance was similar for all three treatments. Finally, the consumer’s acceptance was influenced mainly by soluble solids content, acidity and 2-methylpropyl esters.Se agradece la financiación recibida del Ministerio de Ciencia y Tecnología (proyecto RTA2005-00050-00-00), así como la concesión de una beca predoctoral a R. Altisent por parte del INIA
    corecore