23 research outputs found

    Legacy ExtraGalactic UV Survey with The Hubble Space Telescope: Stellar Cluster Catalogs and First Insights Into Cluster Formation and Evolution in NGC 628

    Get PDF
    We report the large effort that is producing comprehensive high-level young star cluster (YSC) catalogs for a significant fraction of galaxies observed with the Legacy ExtraGalactic UV Survey (LEGUS) Hubble treasury program. We present the methodology developed to extract cluster positions, verify their genuine nature, produce multiband photometry (from NUV to NIR), and derive their physical properties via spectral energy distribution fitting analyses. We use the nearby spiral galaxy NGC 628 as a test case for demonstrating the impact that LEGUS will have on our understanding of the formation and evolution of YSCs and compact stellar associations within their host galaxy. Our analysis of the cluster luminosity function from the UV to the NIR finds a steepening at the bright end and at all wavelengths suggesting a dearth of luminous clusters. The cluster mass function of NGC 628 is consistent with a power-law distribution of slopes ∌−2\sim -2 and a truncation of a few times 105 M⊙{M}_{\odot }. After their formation, YSCs and compact associations follow different evolutionary paths. YSCs survive for a longer time frame, confirming their being potentially bound systems. Associations disappear on timescales comparable to hierarchically organized star-forming regions, suggesting that they are expanding systems. We find mass-independent cluster disruption in the inner region of NGC 628, while in the outer part of the galaxy there is little or no disruption. We observe faster disruption rates for low mass (≀104 M⊙{M}_{\odot }) clusters, suggesting that a mass-dependent component is necessary to fully describe the YSC disruption process in NGC 628

    Overview of the JET results in support to ITER

    Get PDF

    Host galaxies of SNe Ic-BL with and without long gamma-ray bursts

    Get PDF
    International audienceBroad-line Ic supernovae (SNe Ic-BL) are a very rare class of core-collapse supernovae exhibiting high ejecta velocities and high kinetic energies. They are the only type of SNe that accompany long gamma-ray burst (GRB) explosions. Systematic differences found in the spectra of SNe Ic-BL with and without GRBs (GRB-SNe and SNe Ic-BL, respectively) could either be due to differences in the progenitor or/and explosion mechanism of SNe Ic-BL caused by the presence or absence of a GRB, or solely to differences in the viewing angle of the observer with respect to the orientation of the collimated explosion. We present the systematic comparison of the host galaxies of broad-lined SNe Ic with and without a detected GRB, the latter being detected in untargeted surveys, with the aim to find out whether there are any systematic differences between the environments in which these two classes of SNe preferentially explode. We study photometric properties of the host galaxies of a sample of 8 GRB-SNe and a sample of 28 SNe Ic-BL at z < 0.2. The two galaxy samples have indistinguishable luminosity and proper size distribution. We find indications that GRB-SNe on average occur closer to the centres of their host galaxies, that is, the samples have a different distribution of projected offsets, normalized by the galaxy sizes. In addition, we compare gas-phase metallicities of the GRB-SNe and SNe Ic-BL host samples and find that a larger fraction of super-solar metallicity hosts are found among the SNe Ic-BL without a GRB. Our results are indicative of a genuine difference between the two types of explosions and suggest that the viewing angle is not the main source of difference in the spectra of the two classes. We discuss the implications that our results have on our understanding of progenitors of SNe Ic-BL with and without a GRB.Key words: supernovae: general / gamma-ray burst: general / galaxies: star formatio

    Drivers of change in global agriculture

    No full text
    As a result of agricultural intensification, more food is produced today than needed to feed the entire world population and at prices that have never been so low. Yet despite this success and the impact of globalization and increasing world trade in agriculture, there remain large, persistent and, in some cases, worsening spatial differences in the ability of societies to both feed themselves and protect the long-term productive capacity of their natural resources. This paper explores these differences and develops a country×farming systems typology for exploring the linkages between human needs, agriculture and the environment, and for assessing options for addressing future food security, land use and ecosystem service challenges facing different societies around the world

    Candidate LBV stars in galaxy NGC 7793 found via HST photometry + MUSE spectroscopy

    Get PDF
    Only about 19 Galactic and 25 extragalactic bonafide luminous blue variables (LBVs) are known to date. This incomplete census prevents our understanding of this crucial phase of massive star evolution which leads to the formation of heavy binary black holes via the classical channel. With large samples of LBVs one could better determine the duration and maximum stellar luminosity which characterize this phase. We search for candidate LBVs (cLBVs) in a new galaxy, NGC 7793. For this purpose, we combine high spatial resolution images from two Hubble Space Telescope (HST) programs with optical spectroscopy from the Multi Unit Spectroscopic Explorer (MUSE). By combining PSF-fitting photometry measured on F547M, F657N, and F814W images, with restrictions on point-like appearance (at HST resolution) and H α luminosity, we find 100 potential cLBVs, 36 of which fall in the MUSE fields. Five of the latter 36 sources are promising cLBVs which have MV ≀ −7 and a combination of: H α with a P-Cygni profile; no [O I]λ6300 emission; weak or no [O III]λ5007 emission; large [N II]/H α relative to H II regions; and [S II]λ6716/[S II]λ6731∌1⁠. It is not clear if these five cLBVs are isolated from O-type stars, which would favour the binary formation scenario of LBVs. Our study, which approximately covers one fourth of the optical disc of NGC 7793, demonstrates how by combining the above HST surveys with multi-object spectroscopy from 8-m class telescopes, one can efficiently find large samples of cLBVs in nearby galaxies

    Extinction Maps and Dust-to-gas Ratios in Nearby Galaxies with LEGUS

    Get PDF
    We present a study of the dust-to-gas ratios in five nearby galaxies: NGC 628 (M74), NGC 6503, NGC 7793, UGC 5139 (Holmberg I), and UGC 4305 (Holmberg II). Using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury program Legacy ExtraGalactic UV Survey (LEGUS) combined with archival HST/Advanced Camera for Surveys data, we correct thousands of individual stars for extinction across these five galaxies using an isochrone-matching (reddening-free Q) method. We generate extinction maps for each galaxy from the individual stellar extinctions using both adaptive and fixed resolution techniques and correlate these maps with neutral H i and CO gas maps from the literature, including the H i Nearby Galaxy Survey and the HERA CO-Line Extragalactic Survey. We calculate dust-to-gas ratios and investigate variations in the dust-to-gas ratio with galaxy metallicity. We find a power-law relationship between dust-to-gas ratio and metallicity, consistent with other studies of dust-to-gas ratio compared to metallicity. We find a change in the relation when H2 is not included. This implies that underestimation of NH2{N}_{{{\rm{H}}}_{2}} in low-metallicity dwarfs from a too-low CO-to-H2 conversion factor X CO could have produced too low a slope in the derived relationship between dust-to-gas ratio and metallicity. We also compare our extinctions to those derived from fitting the spectral energy distribution (SED) using the Bayesian Extinction and Stellar Tool for NGC 7793 and find systematically lower extinctions from SED fitting as compared to isochrone matching
    corecore