3,029 research outputs found
Potential and performance of a polydopamine-coated multiwalled carbon nanotube/polysulfone nanocomposite membrane for ultrafiltration application
© 2015 The Korean Society of Industrial and Engineering Chemistry. The addition of multiwalled carbon nanotubes (MWNTs) as inorganic fillers is well known to improve membrane performance for water desalination. Most MWNTs are treated by acid treatment to enhance their hydrophilicity before their applications in membranes. However, acid treatment leads to structural damages of the MWNT wall. An alternative way of improving the hydrophilicity of MWNTs is through coating of polydopamine (Pdop), where MWNT wall damage is avoided. In the present study, polydopamine-coating on MWNT is carried out at pH 8.5 and at room temperature (23-25. °C). Different concentrations (0.1-0.5 wt%) of Pdop-MWNTs were incorporated into polysulfone (Psf) membranes fabricated by phase inversion. The results showed that the incorporation of Pdop-coated MWNTs has increased the membrane permeability using BSA solution (1000 ppm) by 19-50% depending on the amount of Pdop-MWNTs in the membrane, and has maintained good rejection performances (99.88%). Moreover, the antifouling properties of the nanocomposite membranes were also improved. Here, the optimum dose was determined to be 0.1. wt% of Pdop-MWNTs. Furthermore, even though the Pdop-MWNT/Psf membranes showed lower permeability than acid-MWNT/Psf membrane, the Pdop-MWNT/Psf membrane obtained higher mechanical strength and would be potentially sustainable for a long term ultrafiltration operation
Heavy metals in agricultural soils of the Pearl River Delta, South China
Author name used in this publication: S. C. WongAuthor name used in this publication: X. D. LiAuthor name used in this publication: G. ZhangAuthor name used in this publication: S. H. QiAuthor name used in this publication: Y. S. Min2001-2002 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe
Feasibility and Acceptability of Mobile Phone–Based Auto-Personalized Physical Activity Recommendations for Chronic Pain Self-Management: Pilot Study on Adults
Background: Chronic pain is a globally prevalent condition. It is closely linked with psychological well-being, and it is often concomitant with anxiety, negative affect, and in some cases even depressive disorders. In the case of musculoskeletal chronic pain, frequent physical activity is beneficial. However, reluctance to engage in physical activity is common due to negative psychological associations (eg, fear) between movement and pain. It is known that encouragement, self-efficacy, and positive beliefs are effective to bolster physical activity. However, given that the majority of time is spent away from personnel who can give such encouragement, there is a great need for an automated ubiquitous solution. Objective: MyBehaviorCBP is a mobile phone app that uses machine learning on sensor-based and self-reported physical activity data to find routine behaviors and automatically generate physical activity recommendations that are similar to existing behaviors. Since the recommendations are based on routine behavior, they are likely to be perceived as familiar and therefore likely to be actualized even in the presence of negative beliefs. In this paper, we report the preliminary efficacy of MyBehaviorCBP based on a pilot trial on individuals with chronic back pain. Methods: A 5-week pilot study was conducted on people with chronic back pain (N=10). After a week long baseline period with no recommendations, participants received generic recommendations from an expert for 2 weeks, which served as the control condition. Then, in the next 2 weeks, MyBehaviorCBP recommendations were issued. An exit survey was conducted to compare acceptance toward the different forms of recommendations and map out future improvement opportunities. Results: In all, 90% (9/10) of participants felt positive about trying the MyBehaviorCBP recommendations, and no participant found the recommendations unhelpful. Several significant differences were observed in other outcome measures. Participants found MyBehaviorCBP recommendations easier to adopt compared to the control (βint=0.42, P<.001) on a 5-point Likert scale. The MyBehaviorCBP recommendations were actualized more (βint=0.46, P<.001) with an increase in approximately 5 minutes of further walking per day (βint=4.9 minutes, P=.02) compared to the control. For future improvement opportunities, participants wanted push notifications and adaptation for weather, pain level, or weekend/weekday. Conclusions: In the pilot study, MyBehaviorCBP’s automated approach was found to have positive effects. Specifically, the recommendations were actualized more, and perceived to be easier to follow. To the best of our knowledge, this is the first time an automated approach has achieved preliminary success to promote physical activity in a chronic pain context. Further studies are needed to examine MyBehaviorCBP’s efficacy on a larger cohort and over a longer period of time
Phosphatidylinositol Transfer Protein-α in platelets is inconsequential for thrombosis yet is utilized for tumor metastasis
Platelets are increasingly recognized for their contributions to tumor metastasis. Here, we show that the phosphoinositide signaling modulated by phosphatidylinositol transfer protein type α (PITPα), a protein which shuttles phosphatidylinositol between organelles, is essential for platelet-mediated tumor metastasis. PITPα-deficient platelets have reduced intracellular pools of phosphoinositides and an 80% reduction in IP3 generation upon platelet activation. Unexpectedly, mice lacking platelet PITPα form thrombi normally at sites of intravascular injuries. However, following intravenous injection of tumor cells, mice lacking PITPα develop fewer lung metastases due to a reduction of fibrin formation surrounding the tumor cells, rendering the metastases susceptible to mucosal immunity. These findings demonstrate that platelet PITPα-mediated phosphoinositide signaling is inconsequential for in vivo hemostasis, yet is critical for in vivo dissemination. Moreover, this demonstrates that signaling pathways within platelets may be segregated into pathways that are essential for thrombosis formation and pathways that are important for non-hemostatic functions
Optimal Receiver Antenna Location in Indoor Environment Using Dynamic Differential Evolution and Genetic Algorithm
[[abstract]]Using the impulse responses of these multipath channels, the bit error rate (BER) performance for binary pulse amplitude modulation impulse radio ultra-wideband communication system is calculated. The optimization location of receiving antenna is investigated by dynamic differential evolution (DDE) and genetic algorithm (GA) to minimize the outage probability. Numerical results show that the performance for reducing BER and outage probability by DDE algorithm is better than that by GA.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子
Phytochemicals as antibiotic alternatives to promote growth and enhance host health
There are heightened concerns globally on emerging drug-resistant superbugs and the lack of new antibiotics for treating human and animal diseases. For the agricultural industry, there is an urgent need to develop strategies to replace antibiotics for food-producing animals, especially poultry and livestock. The 2nd International Symposium on Alternatives to Antibiotics was held at the World Organization for Animal Health in Paris, France, December 12-15, 2016 to discuss recent scientific developments on strategic antibiotic-free management plans, to evaluate regional differences in policies regarding the reduction of antibiotics in animal agriculture and to develop antibiotic alternatives to combat the global increase in antibiotic resistance. More than 270 participants from academia, government research institutions, regulatory agencies, and private animal industries from >25 different countries came together to discuss recent research and promising novel technologies that could provide alternatives to antibiotics for use in animal health and production; assess challenges associated with their commercialization; and devise actionable strategies to facilitate the development of alternatives to antibiotic growth promoters (AGPs) without hampering animal production. The 3-day meeting consisted of four scientific sessions including vaccines, microbial products, phytochemicals, immune-related products, and innovative drugs, chemicals and enzymes, followed by the last session on regulation and funding. Each session was followed by an expert panel discussion that included industry representatives and session speakers. The session on phytochemicals included talks describing recent research achievements, with examples of successful agricultural use of various phytochemicals as antibiotic alternatives and their mode of action in major agricultural animals (poultry, swine and ruminants). Scientists from industry and academia and government research institutes shared their experience in developing and applying potential antibiotic-alternative phytochemicals commercially to reduce AGPs and to develop a sustainable animal production system in the absence of antibiotics.Fil: Lillehoj, Hyun. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Liu, Yanhong. University of California; Estados UnidosFil: Calsamiglia, Sergio. Universitat Autònoma de Barcelona; EspañaFil: Fernandez Miyakawa, Mariano Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Patobiología; ArgentinaFil: Chi, Fang. Amlan International; Estados UnidosFil: Cravens, Ron L.. Amlan International; Estados UnidosFil: Oh, Sungtaek. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Gay, Cyril G.. United States Department of Agriculture. Agricultural Research Service; Argentin
A Dual-Readout F2 Assay That Combines Fluorescence Resonance Energy Transfer and Fluorescence Polarization for Monitoring Bimolecular Interactions
Forster (fluorescence) resonance energy transfer (FRET) and fluorescence polarization (FP) are widely used technologies for monitoring bimolecular interactions and have been extensively used in high-throughput screening (HTS) for probe and drug discovery. Despite their popularity in HTS, it has been recognized that different assay technologies may generate different hit lists for the same biochemical interaction. Due to the high cost of large-scale HTS campaigns, one has to make a critical choice to employee one assay platform for a particular HTS. Here we report the design and development of a dual-readout HTS assay that combines two assay technologies into one system using the Mcl-1 and Noxa BH3 peptide interaction as a model system. In this system, both FP and FRET signals were simultaneously monitored from one reaction, which is termed -Dual-Readout F2 assay- with F2 for FP and FRET. This dual-readout technology has been optimized in a 1,536-well ultra-HTS format for the discovery of Mcl-1 protein inhibitors and achieved a robust performance. This F2 assay was further validated by screening a library of 102,255 compounds. As two assay platforms are utilized for the same target simultaneously, hit information is enriched without increasing the screening cost. This strategy can be generally extended to other FP-based assays and is expected to enrich primary HTS information and enhance the hit quality of HTS campaigns.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90469/1/adt-2E2010-2E0292.pd
A retrospective analysis of second-line chemotherapy in patients with advanced gastric cancer
<p>Abstract</p> <p>Background</p> <p>Because treatment of advanced gastric cancer (AGC) patients after failure with first-line chemotherapy remains controversial, we performed this retrospective analysis based on the data obtained from 1455 patients registered in a first-line treatment cohort with respect to receiving or not receiving subsequent chemotherapy.</p> <p>Methods</p> <p>The decision for administering second-line chemotherapy was, in most cases, at the discretion of the physician. Seven-hundred twenty-five (50%) received second-line chemotherapy after first-line failure. Univariate and multivariate analyses were performed on the recognized baseline parameters for survival.</p> <p>Results</p> <p>At the time of initiating second-line chemotherapy, the patients' median age was 56 years (range, 22 to 86) and 139 (19%) had an Eastern Cooperative Oncology Group (ECOG) performance status of 2 or more. Seven (1%) complete and 108 (15%) partial responses to second-line chemotherapy were observed for an overall response rate of 16% (95% confidence interval [CI], 13 to 19%). The median progression-free and overall survivals, calculated from the start of second-line chemotherapy, were 2.9 months (95% CI, 2.6 to 3.3) and 6.7 months (95% CI, 5.8 to 7.5), respectively. Multivariate analysis revealed that low baseline hemoglobin level (hazard ratio [HR], 0.74; 95% CI 0.61–0.90) and a poor performance status (HR, 0.66; 95% CI, 0.52–0.83) were independent negative prognostic factors for overall survival.</p> <p>Conclusion</p> <p>Performance status, along with baseline hemoglobin level, could be used to identify the subgroup of patients most likely to benefit from second-line chemotherapy for AGC.</p
Flagellin is a strong vaginal adjuvant of a therapeutic vaccine for genital cancer
Cervical cancer is a high-incidence female cancer most commonly caused by human papilloma virus (HPV) infection of the genital mucosa. Immunotherapy targeting HPV-derived tumor antigens (TAs) has been widely studied in animal models and in patients. Because the female genital tract is a portal for the entry of HPV and a highly compartmentalized system, the development of topical vaginal immunotherapy in an orthotopic cancer model would provide an ideal therapeutic. Thus, we examined whether flagellin, a potent mucosal immunomodulator, could be used as an adjuvant for a topical therapeutic vaccine for female genital cancer. Intravaginal (IVAG) co-administration of the E6/E7 peptides with flagellin resulted in tumor suppression and long-term survival of tumor-bearing mice. In contrast to IVAG vaccination, intranasal (IN) or subcutaneous (SC) immunization did not induce significant tumor suppression in the same model. The vaginal adjuvant effect of the flagellin was completely abolished in Toll-like receptor-5 (TLR5) knock-out mice. IVAG immunization with the E6/E7 peptides plus flagellin induced the accumulation of CD4(+) and CD8(+) cells and the expression of T cell activation-related genes in the draining genital lymph nodes (gLNs). The co-administered flagellin elicited antigen-specific IFN gamma production in the gLNs and spleen. The intravaginally administered flagellin was found in association with CD11c(+) cells in the gLNs. Moreover, after immunization with a flagellin and the E6/E7 peptides, the TLR5 expression in gLN cells was significantly upregulated. These results suggest that flagellin serves as a potent vaginal adjuvant for a therapeutic peptide cancer vaccine through the activation of TLR5 signaling.1166sciescopu
Salmonella typhimurium Suppresses Tumor Growth via the Pro-Inflammatory Cytokine Interleukin-1 beta
Although strains of attenuated Salmonella typhimurium and wild-type Escherichia coli show similar tumor-targeting capacities, only S. typhimurium significantly suppresses tumor growth in mice. The aim of the present study was to examine bacteria-mediated immune responses by conducting comparative analyses of the cytokine profiles and immune cell populations within tumor tissues colonized by E. coli or attenuated Salmonellae. CT26 tumor-bearing mice were treated with two different bacterial strains: S. typhimurium defective in ppGpp synthesis (Delta ppGpp Salmonellae) or wild-type E. coli MG1655. Cytokine profiles and immune cell populations in tumor tissue colonized by these two bacterial strains were examined at two time points based on the pattern of tumor growth after Delta ppGpp Salmonellae treatment: 1) when tumor growth was suppressed ('suppression stage') and 2) when they began to re-grow ('re-growing stage'). The levels of IL-1 beta and TNF-alpha were markedly increased in tumors colonized by Delta ppGpp Salmonellae. This increase was associated with tumor regression; the levels of both IL-1 beta and TNF-alpha returned to normal level when the tumors started to re-grow. To identify the immune cells primarily responsible for Salmonellae-mediated tumor suppression, we examined the major cell types that produce IL-1 beta and TNF-alpha. We found that macrophages and dendritic cells were the main producers of TNF-alpha and IL-1 beta. Inhibiting IL-1 beta production in Salmonellae-treated mice restored tumor growth, whereas tumor growth was suppressed for longer by local administration of recombinant IL-1 beta or TNF-alpha in conjunction with Salmonella therapy. These findings suggested that IL-1 beta and TNF-alpha play important roles in Salmonella-mediated cancer therapy. A better understanding of host immune responses in Salmonella therapy may increase the success of a given drug, particularly when various strategies are combined with bacteriotherapy.111715Ysciescopu
- …