36 research outputs found

    A pathway-based mean-field model for E. coli chemotaxis: Mathematical derivation and Keller-Segel limit

    Full text link
    A pathway-based mean-field theory (PBMFT) was recently proposed for E. coli chemotaxis in [G. Si, T. Wu, Q. Quyang and Y. Tu, Phys. Rev. Lett., 109 (2012), 048101]. In this paper, we derived a new moment system of PBMFT by using the moment closure technique in kinetic theory under the assumption that the methylation level is locally concentrated. The new system is hyperbolic with linear convection terms. Under certain assumptions, the new system can recover the original model. Especially the assumption on the methylation difference made there can be understood explicitly in this new moment system. We obtain the Keller-Segel limit by taking into account the different physical time scales of tumbling, adaptation and the experimental observations. We also present numerical evidence to show the quantitative agreement of the moment system with the individual based E. coli chemotaxis simulator.Comment: 21 pages, 3 figure

    Structural basis for tetraspanin functions as revealed by the cryo-EM structure of uroplakin complexes at 6-Å resolution

    Get PDF
    Tetraspanin uroplakins (UPs) Ia and Ib, together with their single-spanning transmembrane protein partners UP II and IIIa, form a unique crystalline 2D array of 16-nm particles covering almost the entire urothelial surface. A 6 Å–resolution cryo-EM structure of the UP particle revealed that the UP tetraspanins have a rod-shaped structure consisting of four closely packed transmembrane helices that extend into the extracellular loops, capped by a disulfide-stabilized head domain. The UP tetraspanins form the primary complexes with their partners through tight interactions of the transmembrane domains as well as the extracellular domains, so that the head domains of their tall partners can bridge each other at the top of the heterotetramer. The secondary interactions between the primary complexes and the tertiary interaction between the 16-nm particles contribute to the formation of the UP tetraspanin network. The rod-shaped tetraspanin structure allows it to serve as stable pilings in the lipid sea, ideal for docking partner proteins to form structural/signaling networks

    Identification of carbon dioxide in an exoplanet atmosphere

    Get PDF
    Carbon dioxide (CO2) is a key chemical species that is found in a wide range of planetary atmospheres. In the context of exoplanets, CO2 is an indicator of the metal enrichment (that is, elements heavier than helium, also called ‘metallicity’), and thus the formation processes of the primary atmospheres of hot gas giants. It is also one of the most promising species to detect in the secondary atmospheres of terrestrial exoplanets. Previous photometric measurements of transiting planets with the Spitzer Space Telescope have given hints of the presence of CO2, but have not yielded definitive detections owing to the lack of unambiguous spectroscopic identification. Here we present the detection of CO2 in the atmosphere of the gas giant exoplanet WASP-39b from transmission spectroscopy observations obtained with JWST as part of the Early Release Science programme. The data used in this study span 3.0–5.5 micrometres in wavelength and show a prominent CO2 absorption feature at 4.3 micrometres (26-sigma significance). The overall spectrum is well matched by one-dimensional, ten-times solar metallicity models that assume radiative–convective–thermochemical equilibrium and have moderate cloud opacity. These models predict that the atmosphere should have water, carbon monoxide and hydrogen sulfide in addition to CO2, but little methane. Furthermore, we also tentatively detect a small absorption feature near 4.0 micrometres that is not reproduced by these models

    From the perspective of material science: a review of flexible electrodes for brain-computer interface

    No full text
    As an important branch of man-machine interaction, Brain-Computer Interface (BCI) has the potential to be widely used in various fields, such as health-care, physical efficiency, aerospace, intelligence traffic system, entertainment and so on. The flexible electrode is the crucial component of the BCI, and is the key for the development of the BCI technology. Recently, with the increasing demands on Brain-Computer Interface, plenty of flexible electrode materials and the structural design for applications in BCI technology have been developed. In this study, we review the development of the three kinds of flexible electrodes material selection and structural design in BCI, including non-intrusive electrodes, intrusive electrodes and semi-intrusive electrodes. The challenge and the problems that hinder the development of the flexible electrode are analyzed. Besides, from the perspective of material science, the future applications of the flexible electrode in the BCI field is prospected

    Hydrogeochemical Characteristics and the Suitability of Groundwater in the Alluvial-Diluvial Plain of Southwest Shandong Province, China

    No full text
    The alluvial-diluvial plain of southwest Shandong Province is an important agricultural economic zone and energy base in Shandong Province. Groundwater plays an extremely significant role in the development of the regional social economy. In this study, 50 sets of water samples, collected from 25 wells during October 2016 and June 2017, were utilized to determine the hydrogeochemistry and the suitability of groundwater in the alluvial-diluvial plain of southwest Shandong Province for different applications, such as drinking and irrigation. Most of the water samples could be classified as hard-fresh water or hard-brackish water, and the dominant water types were HCO3-Na and mixed types. Water-rock interactions and evaporation were the dominant controlling factors in the formation of the hydrochemical components in the groundwater. Dissolutions of silicate, calcite, dolomite, and gypsum are the major reactions contributing and defining the groundwater chemistry in this plain. Moreover, cation exchange is a non-negligible hydrogeochemical process in this plain. Calculated saturation index (SI) values indicate that aragonite, calcite and dolomite are saturated, while the SI values for gypsum and halite are unsaturated. Based on fuzzy comprehensive evaluation, the groundwater quality ranges from excellent to very poor. More than 50% of all groundwater samples from 2016 are categorized as poor or very poor, suggesting that the water from these wells is not suitable for drinking. According to the sodium adsorption ratio and percentage sodium, most of the samples are suitable for agricultural irrigation. Overall, the quality of the groundwater in 2017 was found to be better than in 2016

    Hydrochemical Characteristics and Temporal Variations of Geothermal Water Quality in Tangtou, Shandong, China

    No full text
    Geothermal water resources are a kind of clean energy, which is a renewable resource to a certain extent and has a high value of development and utilization. To understand the hydrochemical characteristics, origins, and temporal variations of geothermal water quality in Tangtou, 13 geothermal water samples from 2007 to 2019 and geothermal geological conditions were collected. Cl− and Na+ are the major ions, which make the geothermal water belong Cl-Na type. The total dissolved solids values of geothermal waters were 1560–2512 mg/L and pH were in the range of 6.7–8.8. The development of faulted structures provides conditions for the formation of geothermal water. In addition, geothermal water is recharged by shallow underground cold water. Water-rock interaction, as well as mixing processes, in the process of long runoff path and the slower deep-water cycle is the main factor controlling the chemical composition of geothermal water. Calculated saturation index values indicated that the geothermal water was saturated with respect to silicate and carbonate minerals. Cation and silica chemical geothermometers indicated that reservoir temperatures ranged from 94.63 to 196.10 °C and from 69.13 to 123.75 °C, respectively. Based on the grey relational analysis, the main physicochemical components of geothermal water are obviously correlated with the geothermal water exploitation and precipitation. Overall, affected by exploitation and precipitation, main physicochemical components (such as the total dissolved solids, total hardness, temperature, Na+, Ca2+, Cl−, K+, and Mg2+) showed a certain stage

    Topologically reconfigurable magnetic polaritons

    No full text
    Hyperbolic polaritons in extremely anisotropic materials have attracted intensive attention due to their exotic optical features. Recent advances in optical materials reveal unprecedented dispersion engineering of polaritons, resulting in twistronics for photons, canalized phonon polaritons, shear polaritons, and tunable topological polaritons. However, the on-demand reconfigurability of polaritons, especially with magnetic anisotropic dispersions, is restricted by weak natural magnetic anisotropy and hence remains largely unexplored. Here, we show how origami fused with artificial magnetism unveils a versatile pathway to topologically reconfigure magnetic polaritons. We experimentally demonstrate that the three-dimensional origami deformation allows to reconfigure hyperbolic or elliptic topology of polariton dispersion and modulate group velocity. With group velocity transitioning from positive to negative directions, we further report reconfigurable origami polariton circuitry in which the polariton propagation and phase distribution can be tailored. Our findings provide alternative perspectives on on-chip polaritonics, with potential applications in energy transfer, sensing, and information transport.Published versionThe work at Zhejiang University was sponsored by the Key Research and Development Program of the Ministry of Science and Technology under Grants No. 2022YFA1404704, and 2022YFA1405200, the National Natural Science Foundation of China (NNSFC) under Grants No. 62222115, No. 62171407, No. 11961141010 and No. 61975176, and the Fundamental Research Funds for the Central Universities. M. L acknowledges the support by the China Scholarship Council No. 2020063220086. C.-W.Q. acknowledges the support by the grant (A-0005947-16-00) from Advanced Research and Technology Innovation Centre (ARTIC) in National University of Singapore
    corecore