188 research outputs found

    Preferential closed channel blockade of HERG potassium currents by chemically synthesised BeKm‐1 scorpion toxin

    Get PDF
    The scorpion toxin peptide BeKm‐1 was synthesised by fluorenylmethoxycarbonyl solid phase chemistry and folded by air oxidation. The peptide's effects on heterologous human ether‐a‐go‐go‐related gene potassium current (I HERG) in HEK293 cells were assessed using 'whole‐cell' patch clamp. Blockade of I HERG by BeKm‐1 was concentration‐dependent, temperature‐dependent, and rapid in onset and reversibility. Blockade also exhibited inverse voltage dependence, inverse dependence on duration of depolarisation, and reverse use‐ and frequency‐dependence. Blockade by BeKm‐1 and recombinant ergtoxin, another scorpion toxin known to block HERG, differed in their recovery from HERG current inactivation elicited by strong depolarisation and in their ability to block HERG when the channels were already activated. We conclude that synthetic BeKm‐1 toxin blocks HERG preferentially through a closed (resting) state channel blockade mechanism, although some open channel blockade also occurs

    Beam tests of a large-scale TORCH time-of-flight demonstrator

    Full text link
    The TORCH time-of-flight detector is designed to provide particle identification in the momentum range 2-10 GeV/c over large areas. The detector exploits prompt Cherenkov light produced by charged particles traversing a 10 mm thick quartz plate. The photons propagate via total internal reflection and are focused onto a detector plane comprising position-sensitive Micro-Channel Plate Photo-Multiplier Tubes (MCP-PMT) detectors. The goal is to achieve a single-photon timing resolution of 70 ps, giving a timing precision of 15 ps per charged particle by combining the information from around 30 detected photons. The MCP-PMT detectors have been developed with a commercial partner (Photek Ltd, UK), leading to the delivery of a square tube of active area 53 ×\times 53mm2^2 with a granularity of 8 ×\times 128 pixels equivalent. A large-scale demonstrator of TORCH, having a quartz plate of dimensions 660 ×\times 1250 ×\times 10 mm3^3 and read out by a pair of MCP-PMTs with custom readout electronics, has been verified in a test beam campaign at the CERN PS. Preliminary results indicate that the required performance is close to being achieved. The anticipated performance of a full-scale TORCH detector at the LHCb experiment is presented.Comment: 12 pages, 7 figures, Paper submitted to Nuclear Instruments & Methods in Physics Research, Section A - Special Issue VCI 201

    Atrial-like cardiomyocytes from human pluripotent stem cells are a robust preclinical model for assessing atrial-selective pharmacology

    Get PDF
    Drugs targeting atrial-specific ion channels, K(v)1.5 or K(ir)3.1/3.4, are being developed as new therapeutic strategies for atrial fibrillation. However, current preclinical studies carried out in non-cardiac cell lines or animal models may not accurately represent the physiology of a human cardiomyocyte (CM). In the current study, we tested whether human embryonic stem cell (hESC)-derived atrial CMs could predict atrial selectivity of pharmacological compounds. By modulating retinoic acid signaling during hESC differentiation, we generated atrial-like (hESC-atrial) and ventricular-like (hESC-ventricular) CMs. We found the expression of atrial-specific ion channel genes, KCNA5 (encoding Kv1.5) and KCNJ3 (encoding K-ir 3.1), in hESC-atrial CMs and further demonstrated that these ion channel genes are regulated by COUP-TF transcription factors. Moreover, in response to multiple ion channel blocker, vernakalant, and K(v)1.5 blocker, XEN-D0101, hESC-atrial but not hESC-ventricular CMs showed action potential (AP) prolongation due to a reduction in early repolarization. In hESC-atrial CMs, XEN-R0703, a novel K(ir)3.1/3.4 blocker restored the AP shortening caused by CCh. Neither CCh nor XEN-R0703 had an effect on hESC-ventricular CMs. In summary, we demonstrate that hESC-atrial CMs are a robust model for pre-clinical testing to assess atrial selectivity of novel antiarrhythmic drugs

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Investigating dynamic protocol-dependence of hERG potassium channel inhibition at 37 degrees C: Cisapride versus dofetilide

    No full text
    INTRODUCTION Pharmacological inhibition of cardiac potassium channels encoded by hERG (human ether-Ă -go-go-related gene) is associated with QT interval prolongation and torsades de pointes arrhythmia. Electrophysiological assays of hERG channel inhibition are integral to the safety testing of novel drug candidates. This study was conducted to compare, for the high affinity hERG inhibitors dofetilide and cisapride, hERG blockade between action potential (AP) and conventional (step and step-ramp) screening waveforms. Furthermore, it evaluated dynamic (pulse-by-pulse) protocol-dependence of hERG channel inhibition by these drugs. METHODS Whole-cell patch-clamp recordings were made at 37 degrees C from hERG-expressing HEK 293 cells. Half-maximal inhibitory concentrations (IC(50) values) for I(hERG) blockade were obtained using conventional voltage clamp and action potential clamp, using previously digitised ventricular and Purkinje fibre (PF) AP waveforms. RESULTS A more marked variation in IC(50) values with different command waveforms was observed for cisapride (ranging from 7 to 72 nM) than for dofetilide (ranging from 4 to 15 nM), with higher IC(50)s obtained with AP than step or step-ramp commands. The two drugs differed little from one another in effects on voltage-dependent activation; however, I(hERG) blockade by each drug was initially voltage-dependent, but at steady-state was only voltage-dependent for cisapride. There was comparatively little difference between the two drugs in effects on I(hERG) availability or time constants of development of inactivation. Features of time-dependence of blockade and the use of protocols employing varying rest periods in drug or commands of alternating duration highlighted a pronounced ability of cisapride, but not dofetilide, to dissociate and reassociate from hERG on a pulse-by-pulse basis. DISCUSSION Protocols described here that demonstrated dynamic variation (drug dissociation/reassociation) in hERG channel current blockade at 37 degrees C for cisapride may have future value for investigating drug interactions with the hERG channel. Downloadable digitised ventricular and PF AP waveforms that can be used in AP clamp experiments also accompany this articl
    • …
    corecore