
Research Article

Atrial-like cardiomyocytes from human pluripotent
stem cells are a robust preclinical model for
assessing atrial-selective pharmacology
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Abstract

Drugs targeting atrial-specific ion channels, Kv1.5 or Kir3.1/3.4, are
being developed as new therapeutic strategies for atrial fibrilla-
tion. However, current preclinical studies carried out in non-
cardiac cell lines or animal models may not accurately represent
the physiology of a human cardiomyocyte (CM). In the current
study, we tested whether human embryonic stem cell (hESC)-
derived atrial CMs could predict atrial selectivity of pharmaco-
logical compounds. By modulating retinoic acid signaling during
hESC differentiation, we generated atrial-like (hESC-atrial) and
ventricular-like (hESC-ventricular) CMs. We found the expression
of atrial-specific ion channel genes, KCNA5 (encoding Kv1.5) and
KCNJ3 (encoding Kir 3.1), in hESC-atrial CMs and further demon-
strated that these ion channel genes are regulated by COUP-TF
transcription factors. Moreover, in response to multiple ion chan-
nel blocker, vernakalant, and Kv1.5 blocker, XEN-D0101, hESC-atrial
but not hESC-ventricular CMs showed action potential (AP) prolon-
gation due to a reduction in early repolarization. In hESC-atrial
CMs, XEN-R0703, a novel Kir3.1/3.4 blocker restored the AP short-
ening caused by CCh. Neither CCh nor XEN-R0703 had an effect on
hESC-ventricular CMs. In summary, we demonstrate that hESC-
atrial CMs are a robust model for pre-clinical testing to assess
atrial selectivity of novel antiarrhythmic drugs.
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Introduction

Atrial fibrillation (AF) affects over 33 million people globally

(Chugh et al, 2014) and is characterized by irregular atrial rhythm

leading to a decline in atrial mechanical function. Untreated AF

increases the risk of life-threatening complications such as stroke or

heart failure (Wang et al, 2003; Marini et al, 2005). Current treat-

ment options for rhythm control in AF include interventional ther-

apy such as ablation or pharmacotherapy with antiarrhythmic

drugs. The latter is the preferred treatment of early AF in individuals

who prefer non-invasive treatment and as a follow-up therapy post-

electrical cardioversion, to prevent recurrence of AF (Wann et al,

2011). However, existing antiarrhythmic agents lack atrial selectiv-

ity and pose the risk of inducing undesirable cardiac events, such as

ventricular proarrhythmia (Dobrev & Nattel, 2010).

In order to overcome this limitation, pharmaceutical industry has

initiated design and development of compounds aimed at atrial-

specific targets (Li et al, 2009; Milnes et al, 2012). The notorious

difficulty in obtaining human cardiomyocytes (CMs) and propagat-

ing them in culture has precluded their use from many drug screen-

ing assays and instigated the use of alternative preclinical models.

However, many of the current preclinical screening assays used in

the identification of atrial-selective compounds are performed using

either non-cardiac recombinant cell lines expressing a non-native

ion channel or animal models. Both these models may not accu-

rately represent the ion channel composition as well as physiology

of a human CM and therefore have limitations in predicting drug

responses on the human heart.

Human pluripotent stem cell-derived CMs (hPSC-CMs) offer a

human-based, physiologically relevant model system for drug

discovery and development strategies. Despite the suitability of

these cells for cardiotoxicity testing and safety pharmacology (Braam

et al, 2010; Navarrete et al, 2013), their application in validating
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novel drug candidates for AF requires cultures enriched in atrial-

like CMs. Current protocols for cardiac differentiation of hPSCs

result in heterogeneous pools of CMs consisting predominantly of

ventricular-like cells with a small percentage of atrial-like and

nodal-like cells (Blazeski et al, 2012). Based on substantial evidence

from in vivo and in vitro studies (Niederreither et al, 2001; Hochgreb

et al, 2003; Gassanov et al, 2008; Zhang et al, 2011) indicating a

role for retinoic acid (RA) in atrial specification, we hypothesized

that RA would drive mesodermal progenitors from PSCs toward

an atrial fate.

In the current study, we show that transcriptional and electro-

physiological properties of human embryonic stem cell-derived

atrial CMs (hESC-atrial CMs), generated by modulating RA signal-

ing, closely resemble that of native human atrial CMs. We also

observed that transcription factors, COUP-TFI (NR2F1) and COUP-

TFII (NR2F2), are robustly upregulated in response to RA during

directed atrial differentiation. Short hairpin RNA (shRNA)-mediated

knockdown and chromatin immunoprecipitation (ChIP) of COUP-

TFs identified that they regulate atrial-specific ion channel genes

KCNA5 (encoding Kv1.5) and KCNJ3 (encoding Kir3.1). Furthermore,

hESC-atrial CMs express atrial-selective ion currents, IKur as well as

IK,ACh, and also respond to pharmacological compounds targeting

ion channels that conduct these currents (Kv1.5 and Kir3.1/3.4,

respectively).

Collectively, our data identify a key role for COUP-TF transcrip-

tion factors in RA-driven atrial differentiation and also demonstrate

that hESC-atrial CMs are a robust model for predicting atrial

selectivity of novel pharmacological compounds during preclinical

development.

Results

Treatment of differentiating hESCs with RA promotes
atrial specification

A cocktail of cytokines (Fig 1A) was used to initiate cardiac differen-

tiation in NKX2-5-eGFP/w hESCs as described previously (Ng et al,

2008; Elliott et al, 2011). To direct differentiating hESCs toward an

atrial phenotype, timing and concentration of treatment with RA

were carefully optimized (Supplementary Fig S1A–C). We hypothe-

sized that specification of CM subtypes in vitro occurs post-

mesoderm formation and prior to the onset of cardiac progenitor

stage. Accordingly, embryoid bodies (EBs) were supplemented with

RA from day 4, just after the transient expression of early cardiac

mesoderm marker, MESP1, until day 7, a time point at which key

transcription factors such as NKX2.5, GATA4 and MEF2C important

for commitment and specification of cardiovascular lineages are

activated (Supplementary Fig S1A).

Adding low concentrations of RA (1–10 nmol/l) from day 4 to 7

enhanced cardiac differentiation as assessed by the percentage of

GFP+ cells at day 15 (Supplementary Fig S1B). On the other hand,

treatment with high concentrations of RA (1 lmol/l) in the same

time window resulted in GFP+ EBs with reduced expression of the

ventricular specific myosin gene, MLC2V (Supplementary Fig S1C).

Therefore, treatment of differentiating hESCs with 1 lmol/l of RA

from day 4 to 7 was considered to be most suitable for driving atrial

differentiation. As a control, every experiment included parallel

differentiating cultures treated with 0.002% DMSO (the final

concentration in RA-treated cultures) from day 4 to 7 (Fig 1A).

Morphologically, RA-treated EBs were similar compared with

control EBs (Supplementary Fig S1D), and contractile GFP+ areas

were observed in both groups at day 10 (Fig 1B). Flow cytometry

analysis of GFP expression at day 15 revealed a decrease in the

proportion of NKX2.5-expressing cells upon treatment with RA.

Sixty-five percent of all cells expressed GFP in control differentia-

tion, while only 50% cells in RA-treated differentiation were GFP+

(Fig 1C and Supplementary Fig S1E). These data are consistent with

earlier reports in zebrafish embryo which demonstrated that expo-

sure of anterior lateral plate mesoderm to RA signaling restricts the

size of the cardiac progenitor pool (Keegan et al, 2005). Also, EBs

treated with RA during differentiation displayed faster beating

frequencies upon differentiation (Supplementary Fig S1F). Finally,

immunofluorescence analysis of EBs from both control and

RA-treated differentiations confirmed that the contractile GFP+ areas

expressed both NKX2-5 and the myofilament marker, ACTN2

(Supplementary Fig S1G).

Transcriptional profiling of CMs from RA-treated differentiations
reveals an upregulation of atrial and downregulation of
ventricular markers

To study gene expression in CMs resulting from control and RA-

treated conditions, cells were sorted on the basis of NKX2-5-eGFP.

GFP+ and GFP� fractions from control (CT+/CT�) and RA-treated

EBs (RA+/RA�) isolated at day 31 post-differentiation were assessed

by microarray and quantitative PCR (qPCR). Expression of contrac-

tility genes, TNNC1 and TNNT2, calcium handling genes, RYR2 and

ATP2A2, and cardiac transcription factors, MEF2C and NKX2.5 were

enriched in both CT+ and RA+ pools compared with CT� and

RA� populations, indicating efficient purification of CMs (Fig 1D).

A heat map of GFP+ and GFP� samples also demonstrates strong

correlation with each group (Supplementary Fig S2A). Microarray

analysis demonstrated upregulation of atrial markers such as SLN,

HEYL, PITX2 and NPPA (Fig 1E), while ventricular markers such as

MYL2, IRX4, HAND1 and HEY2 were downregulated in RA+ CMs

(Fig 1F). Measuring expression levels of selected targets by

quantitative qPCR further validated the microarray data in which

expression of NKX2-5 and TNNT2 was significantly higher in GFP+

fractions (Fig 2A). qPCR also confirmed upregulation of atrial

and downregulation of ventricular transcripts in RA+ CMs (Fig 2B

and C).

In order to compare the expression profile of CT+ and RA+ CMs

at day 31 with that of human heart, we included atrial and ventricu-

lar tissue samples of a 15-week-old fetal heart for microarray analy-

sis. A total of 151 genes showed increased expression of more than

twofold in CT+ group compared to RA+. Thirty-two percent of these

genes (49 out of 151) were preferentially expressed in human ventri-

cles, whereas only 8% (13 out of 151) could be identified in the

group of genes that were enriched in the human atria (Fig 2D). On

the other hand, 292 genes showed increased expression of more

than twofold in RA+ group compared to CT+. Thirty-one percent of

the genes (92 out of 292) with enriched expression in RA+ group

were preferentially expressed in the human atria, while a mere 8%

(23 out of 292) of these genes were expressed in the human ventri-

cles (Fig 2E). Gene lists in Venn diagrams (Fig 2D and E) are
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included in Supplementary Table S1. Pie charts illustrating the

cellular localization and molecular function of genes enriched in

CT+ and RA+ groups are shown in Supplementary Fig S2B and C.

Gene ontology (GO) analysis of microarray data was performed

with ConsensusPathDB-human, and terms satisfying a cutoff of

P < 0.01 were considered enriched. GO terms related to four

major classes, cardiovascular development, muscle development,

developmental process and adhesion, were overrepresented in both

groups (Fig 2F). In the category of cardiovascular development,

GO terms such as appendage development, cardiac atrium develop-

ment and cardiac septum development were enriched in RA+ CMs

while cardiac ventricle development, ventricular septum formation

and heart trabecular formation were enriched in CT+ CMs (Supple-

mentary Table S2). A detailed list of GO terms in each category

and the genes are included in Supplementary Table S3.

Therefore, the transcriptional profile of RA+ CMs suggested a

fetal atrial-like gene expression pattern compared with control CMs,

which expressed higher levels of ventricular transcripts.

A

B C

D E F

Figure 1. Treatment of differentiating hESCs with RA promotes atrial specification.

A Schematic of the cardiac differentiation protocol. Beating embryoid bodies (EBs) were observed at day 10. Differentiation efficiency in each experiment was
assessed by flow cytometry (FC) for GFP at day 15. Further characterization of EBs derived from control (CT) and RA-treated (RA) cultures was carried out by
transcriptional or functional analysis between days 27 and 31.

B GFP+ EBs derived from CT and RA cultures at day 10; scale bar: 100 lm.
C Representative FC plots depicting percentage of GFP+ cells obtained at day 15, from CT and RA cultures in a typical experiment.
D Heat map demonstrating enrichment of cardiac genes in GFP+ fractions (CT+, RA+) compared to GFP� fractions (CT�, RA�) at day 31.
E, F Heat map of a select list of genes (E) upregulated and (F) downregulated in RA+ compared to CT+ at day 31. Fold change > 2.
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AP characterization of CMs generated from RA-treated
differentiations establishes their atrial-like phenotype

To study the electrical phenotype of CMs treated with RA during

differentiation, we measured APs of dissociated single cells using

the patch-clamp method (Fig 3). Representative APs stimulated at

1 Hz are shown in Fig 3B. The AP of a CM treated with RA

during differentiation (RA) depicts an AP with a fast phase-1

repolarization and a plateau phase with a more negative potential

compared to a control (CT) CM (Fig 3B). Average RMP (Fig 3C)

A

D

E

F

B C

Figure 2. Transcriptional analysis of CT+ and RA+ CMs.

A–C qPCR of selected transcripts at day 31 to validate (A) enrichment of cardiac markers in GFP+ fractions against GFP� fractions, (B) upregulation of atrial and (C)
downregulation of ventricular genes in RA+ compared to CT+ (n = 3).

D, E Venn diagram to illustrate overlap of gene lists upregulated (UP) in CT+ CMs (D) and RA+ CMs (E) with genes expressed in atria and ventricles of 15-week-old fetal
heart. Red square indicates higher overlap of CT+ with gene list of fetal ventricles or higher overlap of RA+ with gene list of fetal atria.

F Pie chart illustrates major classes of gene ontology terms enriched in gene lists upregulated in CT+ and RA+ CMs.

Data information: Data are presented as mean � SEM. In (A–C), *P < 0.05, **P < 0.01, ***P < 0.001 by unpaired t-test. In (A), for TNNT2, P = 0.0001 for CT� against CT+
and P = 0.0002 for RA� against RA+; for NKX2.5, P = 0.00005 for CT� against CT+ and P = 0.00007 for RA� against RA+. In (B), P = 0.0006 for NPPA and P = 0.0002 for
PITX2. In (C), P = 0.02 for HEY2 and P = 0.007 for IRX4.
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Figure 3. AP characterization of CMs generated from control and RA-treated differentiations.

A AP illustrating the analyzed parameters.
B Representative APs of day 31 CMs from control (CT) and RA-treated (RA) groups at 1 Hz.
C–E RMP, APAmax and APAplat (C), dV/dtmax (D) and APD20, APD50 and APD90 of CT and RA CMs (E).
F Plot showing all measured APAplat values of CT and RA CMs.
G Representative APs of CT and RA CMs at 0.5–4 Hz.
H Average APAplat at 0.5–4 Hz. Please note that the AP differences in morphology are present at all measured frequencies.

Data information: Data are presented as mean � SEM. *P < 0.05 by unpaired t-test or Mann–Whitney rank-sum test for (C–E). In (C), P = 0.238 for RMP; P < 0.001 for
APAmax and APAplat. In (D), P = 0.598 for dV/dtmax. In (E), P ≤ 0.001 for APD20; P = 0.009 for APD50; P = 0.04 for APD90. Two-way repeated measures ANOVA followed by
pairwise comparison using the Student–Newman–Keuls test for (H). *P = 0.002, 0.006, 0.003, 0.004 and 0.003, respectively, for comparison of APAplat between CT and RA
groups at frequencies of 0.5, 1.0, 2.0, 3.0 and 4.0 Hz. AP = action potential; APAmax = maximum AP amplitude; APAplat = AP plateau amplitude; APD20, APD50 and
APD90 = AP duration at 20, 50, and 90% repolarization, respectively; CMs = cardiomyocytes; dV/dtmax = maximum upstroke velocity; RMP = resting membrane potential.
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and dV/dtmax (Fig 3D) did not differ significantly between the two

groups.

In particular, APs of RA CMs had a significantly lower APAmax

(Fig 3C). They also repolarized faster resulting in significantly lower

APAplat (Fig 3C) and shorter APD20, APD50 and APD90 (Fig 3E). A

scatter-plot of individual APAplat values clearly shows that the

plateau amplitudes of individual cells in the RA group were typically

< 80 mV, whereas those in the CT group were > 80 mV (Fig 3F).

The AP differences between the two groups were also consistent

when the cells were paced at higher frequencies (Fig 3G and H). Of

25 cells measured from the control group, about 80% (of 25 cells)

displayed ventricular-like action potential properties while about

85% (of 26 cells) in the RA treatment group showed atrial-like

action potential properties. We observed a very small percentage

(< 1%) of nodal-like cells in both the groups.

The differences observed in AP duration and APAplat between RA

and CT CMs closely matched the AP differences observed between

atrial and ventricular CMs in vivo (Nerbonne & Kass, 2005). Taken

together, gene expression signature and electrophysiological proper-

ties demonstrated that CMs treated with RA during differentiation

displayed atrial-like phenotype (hereby referred to as hESC-atrial

CMs), while control CMs resembled ventricular-like cells (hereby

referred to as hESC-ventricular CMs).

COUP-TFI and COUP-TFII are upregulated in response to retinoic
acid, and their expression persists in differentiated
hESC-atrial CMs

Transcriptional profiling experiments revealed that orphan nuclear

receptor transcription factors, COUP-TFI (NR2F1) and COUP-TFII

(NR2F2), are highly upregulated in hESC-atrial CMs. Based on previ-

ous reports by others indicating the involvement of COUP-TFs in RA

signaling (Jonk et al, 1994; van der Wees et al, 1996), we postulated

that these genes might play a central role downstream of RA during

atrial differentiation. This hypothesis was further supported by

atrial-specific expression of Coup-tfII in the mouse and severe atrial

abnormalities observed in the loss-of-function mouse mutant (Pereira

et al, 1999). A more recent study found that Coup-tfII regulates

atrial identity in the mouse heart (Wu et al, 2013).

In order to determine the dynamics of COUP-TF expression

following RA treatment, expression levels of both COUP-TFI and II

were analyzed by qPCR at different time points and compared to

control EBs. COUP-TFs were induced within 24 h of treatment with

RA followed by dramatic increase in expression thereafter. A line

graph plotting the relative mRNA levels of COUP-TFI and II between

control and RA-treated groups shows striking differences, indicating

that addition of RA induced the expression of these orphan nuclear

receptor transcription factors (Fig 4A and B). The expression of

COUP-TFs was maintained in differentiated CMs at day 31. COUP-TFI

was expressed 20-fold higher, and COUP-TFII was enriched over 30-

fold in hESC-atrial CMs compared to hESC-ventricular CMs (Fig 4A

and B). Antibodies selectively binding to COUP-TFI or COUP-TFII

were used to verify the expression of these proteins. While GFP+

areas in hESC-ventricular CMs at day 25 showed relatively low

expression of COUP-TFI and COUP-TFII, hESC-atrial CMs showed

robust expression of these transcription factors (Fig 4C and D).

To confirm our in vitro findings, which identified high levels of

COUP-TFs in hESC-atrial CMs, we sought to verify the expression of

COUP-TFI and COUP-TFII in the human heart. Previous studies by

others have reported preferential expression of Coup-tfII in the atrial

myocardium of the mouse heart (Pereira et al, 1999), but no data

are available for Coup-tfI. qPCR identified significantly higher mRNA

levels of COUP-TFI and COUP-TFII in the atria as opposed to ventri-

cles in both human fetal and adult heart (Supplementary Fig S3A

and B). In accordance with the mRNA expression levels, COUP-TFI

protein showed nuclear localization in the myocardium of the atrial

chambers stained with TNNI3 (Supplementary Fig S3D and E) while

no expression was detected in the myocardium of ventricles

(Supplementary Fig S3F and G) or elsewhere in two of the analyzed

hFHs at 12 weeks of gestation. Similarly, strong expression of

COUP-TFII was observed in the TNNI3-positive myocardium of the

atria (Supplementary Fig S3H and I), while no expression was found

in the ventricular myocardium (Supplementary Fig S3J and K) of the

hFH. Collectively, expression and histochemical analysis in human

fetal hearts demonstrate that COUP-TFI and II are indeed expressed

in the atrial myocardium of the human heart as observed in hESC-

atrial CMs in vitro.

COUP-TFs regulate expression of atrial-specific potassium
channel genes, KCNA5 and KCNJ3

To investigate whether COUP-TFs have an essential role in differenti-

ated CMs, we used shRNAs to knockdown COUP-TFI or COUP-TFII in

hESC-atrial CMs and studied whether they regulate atrial-specific ion

channel genes. Lentiviral pLKO.1 constructs containing five different

shRNA sequences each (Supplementary Table S4), for COUP-TFI and

COUP-TFII (Supplementary Fig S4A–C), were tested in hESC-atrial

CMs. Two COUP-TFI-shRNAs (#2; #4) and two COUP-TFII-shRNAs

(#7; #10) gave efficient knockdown as assessed by qPCR (Supple-

mentary Fig S4D) and were selected for further experiments. Trans-

duction of COUP-TFI-shRNA or COUP-TFII-shRNA in hESC-atrial CMs

resulted in 70–75% reduction of the corresponding mRNA in

comparison with cells transduced with the scrambled-shRNA

(Fig 5A and B). Knockdown of COUP-TFI and COUP-TFII protein

following shRNA transduction was confirmed by Western blot

(Supplementary Fig S4E). hESC-atrial CMs transduced with scram-

bled-shRNA or COUP-TF-shRNAs maintained their cardiac pheno-

type. Knockdown of COUP-TFI or COUP-TFII in hESC-atrial CMs did

not affect GFP or cTNT expression (Supplementary Fig S5A and B).

Furthermore, shRNA-targeted knockdown of COUP-TFI did not affect

the expression of COUP-TFII and vice versa (Fig 5A and B).

However, knockdown of COUP-TFI or COUP-TFII in hESC-atrial

CMs led to significant decrease in the expression of KCNA5 (Fig 5C

and D). Similarly, knockdown of COUP-TFII decreased the expres-

sion of ion channel genes KCNJ3 and KCNJ5 (Fig 5D). Although

there was a small reduction in the expression of KCNJ3 and KCNJ5

in hESC-atrial CMs with decreased COUP-TFI expression (Fig 5C), it

did not reach significance.

To test whether the atrial-enriched ion channel genes KCNA5 and

KCNJ3 are direct targets of COUP-TFs, we performed ChIP-qPCR

assays using day 30 hESC-atrial CMs. COUP-TF genes regulate

transcription by interacting with direct repeats (DRs) of hormone

responsive elements with various spacings, but show highest affin-

ity to DR sequences separated by 1 nucleotide (DR1). Bioinformatic

analysis of promoter regions of human KCNA5 and KCNJ3 by

Genomatix-MatInspector revealed potential binding sites of the
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Genomatix-defined NR2F matrix family (Supplementary Fig S5).

The promoter region of KCNA5 harbored two plausible NR2F

binding sites (Fig 5E), and analysis of immunoprecipitated DNA

with primers designed around site 1 confirmed binding of both

COUP-TFI and COUP-TFII (Fig 5G). Promoter analysis of KCNJ3

identified several putative NR2F binding sites (Fig 5F), and qPCR

for region encompassing site 1 confirmed interaction of both COUP-

TFs (Fig 5H).

Taken together, these data suggest that COUP-TFI and COUP-TFII

play a pivotal role in regulating ion channel genes responsible for

unique electrophysiological phenotype of human atrial cells.

Atrial-specific currents IKur and IK,ACh are functional in
hESC-atrial CMs

The potassium ion channels Kv1.5 and the Kir3.1/3.4 are more abun-

dant in human atrial than in ventricular CMs (Wang et al, 1993;

Krapivinsky et al, 1995) and are responsible for functional differ-

ences between the two chambers. Kv1.5, encoded by the gene

KCNA5, conducts the ultrarapid delayed rectifier K+ current, IKur,
which is a major repolarizing current in the human atrium. Hetero-

multimers of K+ channels Kir3.1/3.4 encoded by the genes KCNJ3

and KCNJ5, respectively, conduct the acetylcholine-activated current

IK,ACh in the human atria.

We observed significantly higher mRNA expression of both KCNA5

and KCNJ3 in hESC-atrial CMs compared with hESC-ventricular

CMs, in a manner similar to human atrial tissue (in comparison with

human adult ventricular tissue) (Fig 6A).

We next assessed the current densities of IKur and IK,ACh in hESC-

ventricular and hESC-atrial CMs. IKur, measured as the current sensi-

tive to 50 lmol/l 4-AP (Wang et al, 1993), was clearly present in

hESC-atrial CMs but absent in hESC-ventricular CMs (Fig 6B).

IK,ACh, measured as the current evoked by the muscarinic agonist,

CCh (10 lmol/l), was also present in hESC-atrial CMs but could not

A B

C D

Figure 4. Retinoic acid induces COUP-TFI and COUP-TFII during atrial differentiation.

A, B Line plot illustrating relative mRNA levels of (A) COUP-TFI and (B) COUP-TFII in VM and AM differentiations from day 5 through day 9 (left) and in GFP+ CMs at day
31 (right); n = 3.

C, D COUP-TFI (C) and COUP-TFII (D) immunofluorescence at day 31 in AM (top) and VM (bottom). Scale bars: 40 lm.

Data information: Data are presented as mean � SEM. In (A, B), *P < 0.05, **P < 0.01, ***P < 0.001 by unpaired t-test. In (A), left panel, P = 0.03, 0.02, 0.03, 0.005 and
0.0004 for comparison of COUP-TFI expression between AM and VM at days 5, 6, 7, 8 and 9 of differentiation. In (A), right panel, P = 0.0002 for comparison of COUP-TFI
expression at day 31 between AM and VM. In (B), left panel, P = 0.02, 0.03, 0.006, 0.004 and 0.003 for comparison of COUP-TFII expression between AM and VM at days
5, 6, 7, 8 and 9 of differentiation. In (B), right panel, P = 0.0001 for comparison of COUP-TFII expression at day 31 between AM and VM. CT = control differentiation;
hESC-atrial (AM); hESC-ventricular (VM).
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G H

Figure 5. COUP-TFs regulate atrial-specific ion channel genes KCNA5 and KCNJ3.

A, B mRNA expression of COUP-TFI and COUP-TFII following shRNA-mediated knockdown of (A) COUP-TFI or (B) COUP-TFII in hESC-atrial cardiomyocytes (AM) at day 30.
C, D mRNA expression of ion channel genes KCNA5, KCNJ3 and KCNJ5 after knockdown of (C) COUP-TFI or (D) COUP-TFII in AM at day 30.
E, F Schematic of NR2F binding sites in (E) KCNA5 and (F) KCNJ3 promoters.
G, H ChIP-qPCR analysis at day 30 shows enriched binding of COUP-TFI and COUP-TFII to the promoter region of (G) KCNA5 and (H) KCNJ3, compared to IgG in AM.

Data information: Data are presented as mean � SEM. *P < 0.05, **P < 0.01, ***P < 0.001 by unpaired t-test. In (A), P = 0.00004. In (B), P = 0.0001. In (C), P = 0.0001.
In (D), P = 0.000004, 0.006 and 0.001, respectively. In (G), P = 0.0004 for COUP-TFI and P = 0.0002 for COUP-TFII. In (H), P = 0.0003 for COUP-TFI and P = 0.0001 for
COUP-TFII.

ª 2015 The Authors EMBO Molecular Medicine Vol 7 | No 4 | 2015

Harsha D Devalla et al hESC-atrial CMs for atrial-selective pharmacology EMBO Molecular Medicine

401



A

B

C

D

E

Figure 6.

EMBO Molecular Medicine Vol 7 | No 4 | 2015 ª 2015 The Authors

EMBO Molecular Medicine hESC-atrial CMs for atrial-selective pharmacology Harsha D Devalla et al

402



be detected in hESC-ventricular CMs (Fig 6C). Thus, hESC-atrial

CMs have substantially higher IKur and IK,ACh densities, consistent

with the greater mRNA expression of KCNA5 and KCNJ3.

Lastly, we evaluated the contribution of IKur and IK,ACh in the APs

of hESC-atrial and hESC-ventricular CMs. Blocking IKur by 4-AP

(50 lmol/l) reduced phase-1 repolarization resulting in AP prolon-

gation and an increase in APAplat in hESC-atrial but not hESC-

ventricular CMs (Supplementary Fig S6D and Supplementary

Table S5). These effects of IKur block observed in hESC-atrial CMs

confirmed its functional presence and are consistent with the effects

reported in freshly isolated human atrial CMs (Wang et al, 1993).

On the other hand, activation of IK,ACh by CCh resulted in hyperpo-

larization of the RMP in hESC-atrial CMs but not in hESC-ventricular

CMs (Fig 6E and Supplementary Table S5). The effects of IK,ACh acti-

vation on the AP of hESC-atrial CMs are consistent with findings in

isolated human atrial myocytes (Koumi et al, 1994).

These results suggest that hESC-atrial CMs derived from RA-

treated differentiations possess functional IKur and IK,ACh currents

and might therefore be a suitable model for testing drug responses

of pharmacological compounds selective for atrial cells.

Effects of vernakalant on APs of hESC-atrial and
hESC-ventricular CMs

To validate hESC-atrial CMs as a preclinical model for screening the

selectivity of ion channel blockers, we tested the effects of antiar-

rhythmic agent, vernakalant (Wettwer et al, 2013). Intravenous

form of this drug has recently been approved by the European Medi-

cines Agency for cardioversion of recent-onset AF (Savelieva et al,

2014). In order to study the effects of this compound on the APs of

hESC-atrial and hESC-ventricular CMs, 30 lmol/l of the compound

(Wettwer et al, 2013) was administered while the cells were paced

at various frequencies (1–4 Hz) and compared with pre-drug

controls.

Figure 7A shows typical APs of hESC-atrial and hESC-ventricular

CMs at 1 Hz in the absence and presence of vernakalant. In hESC-

atrial CMs, at a frequency of 1 Hz, vernakalant significantly reduced

dV/dtmax (Fig 7A, inset) and increased APAmax (> 2.5 mV) and

APAplat (> 20%) resulting in prolongation of early as well as

late repolarization (APD20: > 7.5 ms; APD50: > 15 ms and APD90:

> 22 ms) in hESC-atrial CMs. These effects on APAplat and dV/dt

were also observed at higher stimulation frequencies (Fig 7B

and C). In hESC-ventricular CMs, vernakalant reduced dV/dtmax

but without affecting other AP parameters at 1 Hz (Fig 7A and

Supplementary Table S6). Interestingly, vernakalant depressed dV/

dtmax in a frequency-dependent manner in both hESC-atrial and

hESC-ventricular CMs by a similar amount (Fig 7C). The AP changes

in response to vernakalant were nearly reversible upon washout.

The effects of 30 lmol/l vernakalant on dV/dtmax, APA and

APD20 of hESC-atrial CMs were consistent with the results observed

in human atrial trabeculae in sinus rhythm (SR) (Wettwer et al,

2013).

Effects of XEN-D0101 on APs of hESC-atrial and
hESC-ventricular CMs

Drugs developed to target Kv1.5 channels would ideally offer atrial

selectivity and have no proarrhythmic effect, since IKur conducted by

these channels is absent in the ventricles. To determine the response

of hESC-atrial CMs to blockers that act on repolarizing potassium

currents expressed preferentially in atrial CMs, we tested the effect

of a selective Kv1.5 blocker, XEN-D0101 (Ford et al, 2013).

Figure 8A shows typical APs of hESC-atrial and hESC-ventricular

CMs at 1 Hz in the absence and presence of 3 lmol/l XEN-D0101.

Treatment with XEN-D0101 caused robust elevation of APAplat

(> 26 mV) as well significant prolongation of APD20 (> 30 ms),

APD50 (> 35 ms) and APD90 (> 23 ms) in hESC-atrial cells, but the

compound did not significantly alter any AP parameter in hESC-

ventricular CMs (Fig 8A and Supplementary Table S7). AP changes

caused by XEN-D0101 were reversible upon washout. The effect of

XEN-D0101 on APD20 and APD50 of hESC-atrial CMs is consistent

with the effects observed in native human atrial trabeculae in SR

(Ford et al, 2013). On the contrary, XEN-D0101 significantly altered

APA (> 10 mV) and dV/dtmax (> 8 V/s) in hESC-atrial CMs

compared with atrial trabeculae in SR. Intriguingly, XEN-D0101

prolonged APD90 in hESC-atrial CMs as well as in human atrial

trabeculae (Ford et al, 2013) in AF while a reduction was observed

in SR.

Effects of XEN-R0703 on APs of hESC-atrial and
hESC-ventricular CMs

Enhanced parasympathetic tone and constitutive activation of IK,ACh
are believed to be contributing factors to both paroxysmal AF

(clinically termed ‘vagal AF’) and chronic AF in man (Dobrev et al,

2005). Thus, antiarrhythmic drugs targeting the Kir3.1/3.4 channels

are a promising therapeutic option for AF termination and the main-

tenance of SR. To determine the presence of IK,ACh in hESC-atrial

and hESC-ventricular CMs, we tested XEN-R0703, a novel selective

IK,ACh-blocking antiarrhythmic drug. The ion channel pharmacology

of XEN-R0703 was investigated in HEK293 cells or CHO cells

expressing the channel of interest (Supplementary Table S8 and

Figure 6. Characterization of IKur and IK,ACh in hESC-ventricular and hESC-atrial CMs.

A Expression of KCNA5 (left) and KCNJ3 (right) in GFP+ pools of VM and AM CMs at day 31, as well as in ventricles and atria of human heart.
B, C Typical examples (left) and current–voltage relationships (right) of (B) IKur and (C) IK,ACh in VM and AM CMs.
D, E Representative APs of VM and AM at 1 Hz in response to (D) IKur block by 4-AP and (E) IK,ACh activation by CCh. AP parameters are shown in Supplementary

Table S5.

Data information: Data are presented as mean � SEM. In (A), *P < 0.05 by unpaired t-test. In (B, C), *P < 0.05 by two-way repeated measures ANOVA followed by
pairwise comparison using the Student–Newman–Keuls test for (B) and Mann–Whitney rank-sum test for (C). In (B), P = 0.778, 0.350, 0.03, 0.02, 0.002, 0.001, < 0.001
and < 0.001, respectively, for comparison between VM and AM within membrane potentials of �20, �10, 0, 10, 20, 30, 40 and 50 mV. In (C), P = 0.01, 0.01, 0.01, 0.01,
0.03, 0.397, 0.397, 0.397, 0.671, 0.207, 0.207, 0.09, 0.01, 0.039 and 0.015, respectively, for comparison between VM and AM within membrane potentials of �120, �110,
�100, �90, �80, �70, �60, �50, �40, �30, �20, �10, 0, 10 and 20 mV. CMs = cardiomyocytes; hESC-atrial (AM) and hESC-ventricular (VM) CMs; IK,ACh = acetylcholine-
activated potassium current; IKur = potassium ultra-rapid delayed rectifier current. 4-AP = 4-aminopyridine; CCh = carbachol.

◀
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Supplementary Fig S7). XEN-R0703 potently inhibited recombinant

Kir3.1/3.4 (IC50 = 57 nM, nH = 0.52 � 0.1) and had nominal effect

on other cardiac channels displaying 100-fold selectivity over hERG

(IC50 5.6 lM, nH = 0.99 � 0.2) and > 300-fold selectivity over

Nav1.5, Cav1.2 and Kir2.1 (IC50 � 10 lM for each) (Supplementary

Fig S7 and Supplementary Table S8). The effect of XEN-R0703 on

native human IK,ACh was confirmed using primary human atrial

CMs. Of 300 nM XEN-R0703 inhibited the CCh-activated native

human IK,ACh by 81 � 10% (Supplementary Fig S8).

To study the effect of 1 lmol/l XEN-R0703 on APs of hESC-atrial

and hESC-ventricular CMs, IK,ACh current was first activated with

10 lmol/l CCh as shown in Fig 6, followed by the addition of

XEN-R0703. Figure 8B shows typical APs of hESC-atrial and hESC-

ventricular CMs at 1 Hz in the absence and presence of XEN-R0703

as well as in the continuous presence of CCh. XEN-R0703 reversibly

depolarized the RMP and restored the AP shortening caused by

CCh in hESC-atrial CMs (Supplementary Table S9). In contrast to

hESC-atrial CMs, XEN-R0703 did not affect any AP parameter in

hESC-ventricular CMs, consistent with the absence of IK,ACh in these

cells. These results also demonstrate that XEN-R0703 does not affect

other membrane currents present in hESC-ventricular CMs, consistent

with the effects of the drug observed in HEK-293 cells expressing

various ion channels (Supplementary Table S8 and Supplementary

Fig S7).

In order to confirm the selectivity of XEN-R0703 predicted by the

effect on hESC-atrial CMs in vitro, the effect of XEN-R0703 was stud-

ied in an in vivo RAP dog model of persistent AF. XEN-R0703

increased right atrial effective refractory period (AERP) in dog by

10, 17 and 28% at 1, 3 and 10 mg/kg without affecting the Van de

Water’s QTc interval (Fig 8C). Furthermore, as depicted in Fig 8D,

XEN-R0703 reduced AF inducibility from 76% in vehicle to 43 and

11% following the administration of 3 and 10 mg/kg.

A

B C

Figure 7. Effects of vernakalant on APs of hESC-ventricular and hESC-atrial CMs.

A Representative APs at 1 Hz of VM and AM CMs in response to vernakalant. Inset shows dV/dtmax.
B, C Average APAplat (B) and dV/dtmax (C)in the absence and presence of vernakalant at 1–4 Hz. AP parameters are shown in Supplementary Table S6. Abbreviations as in

Figs 3 and 6.

Data information: Data are presented as mean � SEM. *P < 0.05 by Mann–Whitney rank-sum test for (B). P = 0.01, 0.008, 0.008 and 0.007, respectively, for comparison
of APAplat between VM and AM groups at frequencies of 1.0, 2.0, 3.0 and 4.0 Hz. Two-way repeated measures ANOVA followed by pairwise comparison using the
Student–Newman–Keuls test for (C). P = 0.686 between VM and AM groups and hence not statistically significant. For VM, P = 0.06 for 1 versus 2 Hz; P < 0.001 for
1 versus 3 Hz; P < 0.001 for 1 versus 4 Hz; P = 0.001 for 2 versus 3 Hz; P = 0.002 for 2 versus 4 Hz; and P = 0.857 for 3 versus 4 Hz. For AM, P = 0.03 for 1 versus 2 Hz;
P < 0.001 for 1 versus 3 Hz; P < 0.001 for 1 versus 4 Hz; P = 0.02 for 2 versus 3 Hz; P = 0.02 for 2 versus 4 Hz; and P = 0.621 for 3 versus 4 Hz.

EMBO Molecular Medicine Vol 7 | No 4 | 2015 ª 2015 The Authors

EMBO Molecular Medicine hESC-atrial CMs for atrial-selective pharmacology Harsha D Devalla et al

404



Discussion

Despite the remarkable improvement in efficiency and robustness of

protocols for cardiac differentiation of hPSCs, the resulting CM

population is usually a heterogeneous pool of atrial-, ventricular-

and nodal-like cells (Mummery et al, 2012). Native atrial and

ventricular CMs exhibit distinct molecular and functional profiles

essential for their diverse physiological roles in the heart, and hPSC-

CM cultures enriched in these subtypes would have significant

added value in drug response assays.

In the study described here, we directed hESCs toward atrial-

like CMs by exogenous addition of RA during CM differentiation.

RA signaling is crucial for atrial chamber development in vivo

(Niederreither et al, 2001; Hochgreb et al, 2003), and its activation

has previously been shown to steer differentiation of mouse and

human ESCs toward atrial-like CMs (Gassanov et al, 2008; Zhang

et al, 2011). However, little is known about the molecular media-

tors that govern ion channel repertoire of RA-driven atrial-like

CMs and their suitability as a model system for preclinical drug

screenings.

Gene expression profiling of the resulting CMs, exposed to RA

during differentiation, indicated an upregulation of atrial transcripts

such as COUP-TFII, SLN, NPPA and PITX2 along with a downregula-

tion of ventricular transcripts such as HAND1, HEY2, IRX4 and

A

B

C D

Figure 8. Effects of XEN-D0101 and XEN-R0703 on APs of hESC-ventricular and hESC-atrial CMs.

A Representative APs of VM and AM CMs in the absence, presence and following washout of 3 lmol/l XEN-D0101. AP parameters are shown in Supplementary
Table S7.

B Representative APs (1 Hz) of VM and AM in the CCh, to activate IK,ACh and subsequent addition of XEN-R0703. AP parameters are shown in Supplementary Table S9.
C, D Experiments performed in RAP conscious dogs in the presence of vehicle or following 1, 3 and 10 mg/kg XEN-R0703 show (C) mean right AERP values (left), mean

Van de Water’s QTc (right) and (D) AF inducibility plotted as a function of dose.

Data information: For RAP dog experiments, n = 5; statistical significance tested with paired t-test. Data are presented as mean � SEM. AERP = atrial effective refractory
period; AF = atrial fibrillation; RAP = rapid atrial pacing; N.S. = not significant. Other abbreviations as in Figs 3, 6 and 7.
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MYL2. COUP-TFII is expressed in atrial chambers of the heart and

has been reported to determine atrial identity in mice (Wu et al,

2013). SLN is also atrial specific and is an integral part of the sarco-

plasmic reticulum calcium complex (Minamisawa et al, 2003).

NPPA is expressed in both atrial and ventricular chambers during

development and becomes progressively restricted to the atria

shortly after birth (Chuva de Sousa Lopes et al, 2006). Cardiac left–

right determinant PITX2 is expressed in the left atrium, and its insuf-

ficiency has been linked to atrial arrhythmogenesis (Kirchhof et al,

2011). Myosin light chain gene, MYL2, iroquois homeobox tran-

scription factor, IRX4, and basic helix-loop-helix transcription

factors, HAND1 and HEY2, are expressed in the developing ventri-

cles of the heart and have critical roles in ventricular chamber

development and function (Moorman & Christoffels, 2003).

Moreover, the global gene profile of hESC-atrial CMs showed a

higher overlap with that of human fetal atria, and hESC-ventricular

CMs showed an increased overlap with that of human fetal ventri-

cles. About 30% of the genes in GFP+ cells of hESC-atrial or

hESC-ventricular CMs overlapped with that of chamber-specific

genes in the fetal heart. Taking into account that we used atria and

ventricles from a 15-week-old human heart, consisting of cardio-

myocytes, endothelial cells, smooth muscle cells, fibroblasts and

other cardiac cells, a 30% overlap can be considered as a strong

correlation. An additional limiting factor is the stage of heart used

for microarray analysis. We used a second trimester human fetal

heart for comparison to hESC-derived CMs while a previous study

has noted that ESC-derived CMs resemble that of embryonic heart

tube (Fijnvandraat et al, 2003).

Multiple mechanisms such as transcriptional regulation or

programmed cell death leading to selective survival might contrib-

ute to subtype specification of atrial or ventricular CMs. Earlier

studies in amniotes had suggested a possibility that RA is required

for the formation of atrial cardiomyocytes and that in its absence,

cardiac precursors differentiate to ventricular cells (Hochgreb et al,

2003; Simoes-Costa et al, 2005). However, a recent study in zebra-

fish has shown that RA signaling acts via different mechanisms to

limit both atrial and ventricular cell numbers but not at the expense

of each other (Waxman et al, 2008). In the current study, we did

not observe any unusual apoptosis in RA-treated embryos compared

to controls during hPSC differentiation. Moreover, we observed

rapid and robust induction of COUP-TFs in response to RA and thus

proposed a central role for these transcription factors in RA-driven

atrial differentiation. COUP-TFI and COUP-TFII belong to the steroid

receptor super family of genes and display overlapping yet distinct

patterns of expression in all the three germ layers in mouse (Pereira

et al, 2000). Both these COUP-TF genes are induced by retinoids in

vivo in zebrafish brain (Jonk et al, 1994). In addition, determination

of the crystal structure of COUP-TFII led to its identification as a

RA-activated receptor (Kruse et al, 2008). Interestingly, deletion of

either RALDH2 or COUP-TFII in the mouse results in severe abnor-

malities of the atria and sinus venosus, implicating COUP-TFII as

a possible downstream effector of RA-driven posterior chamber

specification.

While a role for COUP-TFII in the heart and vasculature has been

identified, little is known about the function of COUP-TFI in the

heart. COUP-TFI was found to be expressed in whole heart protein

lysates obtained from embryonic and neonatal mouse hearts and

has been proposed to antagonize the activation of calreticulin

promoter by NKX2.5 (Guo et al, 2001). The localization of COUP-

TFI in the human heart and its role in cardiac lineage specification

have been unknown to date. We showed here that COUP-TFI is

induced by RA along with COUP-TFII during atrial differentiation in

vitro and was also expressed specifically in the atrial chambers of

the human heart. It is worth mentioning that COUP-TFI was

observed only in the atria of the human fetal heart while expression

of COUP-TFII spanned a broader region (endothelium, smooth

muscle cells—data not shown) than just the atria, suggesting non-

redundant functions of these genes in the human heart.

Based on our results as well as evidence from previous studies

pointing to an integral role for COUP-TFs in the retinoid network

and cell-fate determination, we investigated the functional signifi-

cance of robust expression of these genes in hESC-atrial CMs.

shRNA-mediated knockdown as well as ChIP experiments demon-

strated that COUP-TFs regulate the atrial-selective ion channel gene,

KCNA5. These experiments also established that KCNJ3 and KCNJ5

are regulated by COUP-TFII. Interestingly, although COUP-TFI

showed strong interaction with the KCNJ3 promoter, knockdown of

COUP-TFI itself did not result in a decrease in the expression of

KCNJ3. This suggests that COUP-TFI might be dispensable for the

expression of KCNJ3 and KCNJ5 in atrial CMs. Future studies aimed

at dissecting the roles of COUP-TFI and COUP-TFII during atrial

differentiation are required to understand whether these genes act

in synergy or possess functions independent and specific to one

another. It also remains to be tested whether loss of COUP-TFI can

be rescued by COUP-TFII and vice versa. However, since myocardial

ablation of COUP-TFII in the mouse results in a severe phenotype

(Wu et al, 2013), it seems unlikely that COUP-TFI can account for

loss of COUP-TFII. Nonetheless, it is likely that deletion of both

COUP-TFI and COUP-TFII might result in a more severe phenotype.

Ion channels Kv1.5, Kir3.1 and Kir3.4 encoded by KCNA5, KCNJ3

and KCNJ5, respectively, conduct the potassium currents IKur and

IK,ACh, which are major determinants of electrophysiological differ-

ences between atrial and ventricular CMs (Schram et al, 2002;

Ravens et al, 2013) in humans. Although mechanisms controlling

ion channel expression are far more complex than transcriptional

regulation alone, these findings identify a potential regulatory mech-

anism of KCNA5 and KCNJ3 in human atrial myocytes. Previous

work by others has shown that COUP-TFs regulate the expression of

Na+/H+exchanger (NHE) in differentiating P19 cells (Fernandez-

Rachubinski & Fliegel, 2001). The ability of these transcription

factors to regulate ion channels in diseased and non-diseased

human heart warrants further investigation to better understand

their role in pathophysiological states.

In addition to identifying a central role for COUP-TFs in the

transcriptional regulation of KCNA5 and KCNJ3, we also reported

the functional presence of potassium currents encoded by these

atrial-specific ion channel genes, in hESC-atrial but not hESC-

ventricular CMs. These findings prompted us to investigate

whether hESC-atrial CMs would be a suitable model for preclinical

testing of pharmacological compounds currently being developed

for AF. Drug responses of hESC-atrial CMs following treatment

with multiple ion channel blocker, vernakalant, and selective Kv1.5

blocker, XEN-D0101, recapitulated the effects observed on early

repolarization in human right atrial trabeculae in SR (Ford et al,

2013; Wettwer et al, 2013). Furthermore, we observed effects

of these compounds on other AP parameters such as APD90 in
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hESC-atrial CMs that differ from those previously reported in

human atrial trabeculae in SR. This may be due to the use of

dialyzed (whole-cell patch-clamp) single cells in this study,

whereas previous studies used multicellular preparations, in which

cells were non-dialyzed (sharp microelectrode) and electrically

coupled. Additionally, we tested a novel Kir3.1/3.4 blocker, XEN-

R0703, in an in vivo RAP dog model. Dog is regarded as the one of

the most predictive animal species of human cardiovascular toxic-

ity and is routinely used in the pharmaceutical industry to assess

cardiac safety and the risk of drug-induced ventricular arrhythmias

(Olson et al, 2000). In the dog, XEN-R0703 resulted in a dose-

dependent increase of AERP without affecting the QTc interval.

These results suggest lack of effect of XEN-R0703 on the ventricles

and confirm its atrial selectivity as predicted in hESC-atrial CMs.

hPSC-derived CMs are spontaneously active and exhibit depolar-

ized RMP. Evidence suggests that they are developmentally imma-

ture, resembling human fetal CMs rather than their adult

counterparts (Beqqali et al, 2006). In our study, RMP did not differ

between hESC-atrial CMs and hESC-ventricular CMs indicating simi-

lar level of maturity in both the groups. Nonetheless, hESC-atrial

CMs respond to atrial-selective ion channel blockers demonstrating

that an immature electrical phenotype does not preclude their use in

preclinical drug screening and pharmacology. Our findings have

important implications for integrating hPSC-derived atrial CMs into

high-throughput screenings for selection and validation of lead

compounds during early stages of drug discovery.

In conclusion, we addressed the void for a humanized preclinical

screening platform in the pharmaceutical industry for evaluating

selectivity of novel ion channel blockers for AF. We showed that

hESC-atrial CMs respond to atrial-selective compounds in a manner

similar to isolated human atrial CMs, thus demonstrating the poten-

tial of this tool as a robust model for preclinical atrial-selective

pharmacology.

Materials and Methods

For more detailed Materials and Methods, please see Supplementary

Information.

hESC culture and differentiation to CMs

A transgenic NKX2-5-eGFP/w hESC line that faithfully reports endog-

enous NKX2.5 expression by GFP was described previously (Elliott

et al, 2011). Undifferentiated hESCs were maintained on irradiated

mouse embryonic fibroblasts, and cardiac differentiation was

induced using a spin EB protocol. Briefly, hESCs were harvested

and resuspended on day 0 in BPEL medium (Ng et al, 2008)

containing 20–30 ng/ml hActivin-A (R&D Systems), 20–30 ng/ml

bone morphogenetic protein 4 (R&D Systems), 40 ng/ml stem cell

factor (Stem Cell Technologies), 30 ng/ml vascular endothelial

growth factor (R&D Systems) and 1.5 lmol/l CHIR 99021 (Axon

Medchem). EBs were refreshed on day 3 with BPEL and then trans-

ferred to gelatin-coated dishes on day 7.

To induce atrial specification in hESCs, cardiac differentiation

was initiated as described above and 1 lmol/l all-trans retinoic acid

(RA) (Sigma) was added on day 4 of differentiation. Cells were

refreshed with BPEL on day 7 of differentiation.

Cellular electrophysiology

Cell preparation, data acquisition and analysis

Spin EBs resulting from control and RA-treated differentiations were

dissociated at day 17 to single cells using TrypLETM Select (Life Tech-

nologies) and plated on gelatin-coated coverslips. Electrophysio-

logical measurements were performed 10–14 days after dissociation

from intrinsically quiescent single GFP+ CMs that were able to

contract upon field stimulation.

APs and membrane currents from hESC-CMs were recorded with

the amphotericin-B-perforated patch-clamp technique at 36 � 0.2°C

using an Axopatch 200B amplifier (Molecular Devices, Sunnyvale,

CA, USA). Cells were superfused with Tyrode’s solution containing

(in mmol/l) NaCl 140, KCl 5.4, CaCl2 1.8, MgCl2 1.0, glucose 5.5,

and HEPES 5.0; pH was adjusted to 7.4 with NaOH. Pipettes (boro-

silicate glass; resistance 2–3 MΩ) were heat polished and filled with

solution containing (in mmol/l) K-gluconate 125, KCl 20, NaCl 5,

amphotericin-B 0.22 and HEPES 10; pH was adjusted to 7.2 with

KOH. AP measurements were low-pass-filtered (cutoff frequency

10 kHz) and digitized at 40 kHz; membrane currents were

measured at 1 and 4 kHz, respectively. Capacitance and series resis-

tance were compensated by ≥ 80%, and APs were corrected for the

calculated liquid junction potential (Barry & Lynch, 1991). Voltage

control, data acquisition and analysis were accomplished using

custom software. Cell membrane capacitance (Cm) was estimated by

dividing the time constant of the decay of the capacitive transient in

response to 5 mV hyperpolarizing voltage clamp steps from �40 mV

by the series resistance.

Current clamp experiments

APs were elicited at 0.5 to 4 Hz by 3 ms, ~1.2× threshold current

pulses through the patch pipette. APs were characterized, as

depicted in Fig 2A, by resting membrane potential (RMP), maxi-

mum upstroke velocity (dV/dtmax), maximum AP amplitude

(APAmax), AP plateau amplitude (APAplat, defined as the potential

difference between RMP and potential at 20 ms after the upstroke),

and the duration at 20, 50 and 90% repolarization (APD20, APD50,

and APD90, respectively). Parameter values obtained from 10

consecutive APs were averaged.

Voltage clamp experiments

The ultrarapid delayed rectifier K+ current (IKur) and the acetylcho-

line-activated K+ current (IK,ACh) were measured as the current

sensitive to 50 lM 4-aminopyridine (4-AP) or 10 lM carbachol

(CCh), respectively, in the presence of 10 lM nifedipine to block the

L-type Ca2+ current. Voltage clamp protocols are shown in the

corresponding figures and have been described previously (Choisy

et al, 2012; Wang et al, 1993). Current density was calculated by

dividing current amplitude by Cm.

Statistics

qPCR, electrophysiology, pharmacology, ChIP and knockdown

experiments were performed on cardiomyocytes resulting from

three independent control and RA-treated differentiations.

Statistical analysis was carried out with SigmaStat 3.5 software.

Normality and equal variance assumptions were tested with the

Kolmogorov–Smirnov and the Levene median test, respectively.
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Groups were compared with unpaired t-test or with Mann–Whitney

rank-sum test (in case of a failed normality and/or equal variance

test). Two-way repeated measures (RM) ANOVA followed by the

Student–Newman–Keuls post hoc test was used by comparing

groups in the frequency and I–V relationships. In case of a failed

normality and/or equal variance test, data were tested with the

Mann–Whitney rank-sum test per frequency or voltage. Paired

t-tests were used to compare drug effects within a group of cells.

Data obtained at a series of frequencies within a group were

compared with one-way RM ANOVA. Groups were compared using

paired/unpaired t-test or two-way repeated measures ANOVA

followed by pairwise comparison using the Student–Newman–Keuls

test. P < 0.05 defines statistical significance. Data are presented as

mean � SEM.
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The paper explained

Problem
Atrial fibrillation (AF) is the most common sustained arrhythmia and it
imposes a huge socioeconomic burden worldwide. Existing antiarrhy-
thmic drugs for the treatment of AF carry the risk of causing ventricular
proarrhythmia or negative ionotropy. This highlights the need for devel-
oping atrial-selective drugs that promise safety and efficacy. However,
current preclinical screening assays to identify atrial-specific drugs use
non-cardiac cell lines or animal models, both of which have limitations
in predicting the drug responses on the human heart.

Results
We generated and characterized human embryonic stem cell-derived
atrial-like cardiomyocytes (hESC-atrial CMs). We identified that
COUP-TF transcription factors, induced in response to retinoic acid
during atrial differentiation, regulate atrial-specific ion channel genes
in hESC-atrial CMs. Furthermore, we tested the effect of Vernakalant,
a recently approved drug for the treatment of AF in Europe and noted
that hESC-atrial CMs elicited effects comparable to those observed in
native human CMs in sinus rhythm. We also showed that hESC-atrial
CMs predict atrial-selectivity of novel ion channel blockers, XEN-
D0101 and XEN-R0703. Collectively, these results demonstrate that
hESC-atrial CMs are a valuable model for preclinical drug screenings
to identify effective atrial-selective compounds.

Impact
We uncovered a role for COUP-TFI and COUP-TFII in hESC-atrial CMs,
which warrants further investigation into the role of these transcrip-
tion factors in cardiac development and disease. Moreover, generation
and characterization of cardiomyocyte subtypes such as atrial,
ventricular and pacemaker cells in vitro is essential for their applica-
tion in pre-clinical and clinical testing. In this study, we addressed the
impending need for a preclinical screening model resembling the
physiology of a human atrial cardiomyocyte. The finding that hESC-
atrial CMs are a robust model for atrial-selective pharmacology has
major implications for drug discovery and development to combat AF.
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