141 research outputs found

    Journey to Burning Man

    Get PDF
    This comic book tells the story of four friends coping from personal trauma and stress as they embark on a journey of self-discovery and healing. The storyline focuses on character development and growth as they travel to the Burning Man festival in the Black Rock Desert of Nevada. This trip, and their desire to go in the first place, reflects open-mindedness and a willingness to engage in alternative forms of medicine beneficial to surviving and thriving after illness or injury

    GLEAM : The GaLactic and Extragalactic All-sky MWA survey

    Get PDF
    © Astronomical Society of Australia 2015; published by Cambridge University Press. This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/GLEAM, the GaLactic and Extragalactic All-sky MWA survey, is a survey of the entire radio sky south of declination +25 deg at frequencies between 72 and 231 MHz, made with the Murchison Widefield Array (MWA) using a drift scan method that makes efficient use of the MWA's very large field-of-view. We present the observation details, imaging strategies and theoretical sensitivity for GLEAM. The survey ran for two years, the first year using 40 kHz frequency resolution and 0.5 s time resolution; the second year using 10 kHz frequency resolution and 2 s time resolution. The resulting image resolution and sensitivity depends on observing frequency, sky pointing and image weighting scheme. At 154 MHz the image resolution is approximately 2.5 x 2.2/cos(DEC+26.7) arcmin with sensitivity to structures up to ~10 deg in angular size. We provide tables to calculate the expected thermal noise for GLEAM mosaics depending on pointing and frequency and discuss limitations to achieving theoretical noise in Stokes I images. We discuss challenges, and their solutions, that arise for GLEAM including ionospheric effects on source positions and linearly polarised emission, and the instrumental polarisation effects inherent to the MWA's primary beam.Peer reviewedFinal Published versio

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    Full text link
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described

    Will Democracy Endure Private School Choice? The Effect of the Milwaukee Parental Choice Program on Adult Voting Behavior

    Get PDF
    We employ probit regression analysis to compare the adult voting activity of students who participated in the Milwaukee Parental Choice Program (MPCP) to their matched public school counterparts. We use a sophisticated matching algorithm to create a traditional public school student comparison group using data from the state-mandated evaluation of the MPCP. By the time the students are 19-26 years old, we do not find evidence that private school voucher students are more or less likely to vote in 2012 or 2016 than students educated in public schools. These results are robust to all models and are consistent for all subgroups

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Identification of SKOR2 IgG as a novel biomarker of paraneoplastic neurologic syndrome

    Get PDF
    IntroductionThe development of new autoantigen discovery techniques, like programmable phage immunoprecipitation sequencing (PhIP-Seq), has accelerated the discovery of neural-specific autoantibodies. Herein, we report the identification of a novel biomarker for paraneoplastic neurologic syndrome (PNS), Sloan-Kettering-Virus-Family-Transcriptional-Corepressor-2 (SKOR2)-IgG, utilizing PhIP-Seq. We have also performed a thorough clinical validation using normal, healthy, and disease/cancer control samples.MethodsStored samples with unclassified staining at the junction of the Purkinje cell and the granule cell layers were analyzed by PhIP-Seq for putative autoantigen identification. The autoantigen was confirmed by recombinant antigen-expressing cell-based assay (CBA), Western blotting, and tissue immunofluorescence assay colocalization.ResultsPhIP-Seq data revealed SKOR2 as the candidate autoantigen. The target antigen was confirmed by a recombinant SKOR-2-expressing, and cell lysate Western blot. Furthermore, IgG from both patient samples colocalized with a commercial SKOR2–specific IgG on cryosections of the mouse brain. Both SKOR2 IgG-positive patients had central nervous system involvement, one presenting with encephalitis and seizures (Patient 1) and the other with cognitive dysfunction, spastic ataxia, dysarthria, dysphagia, and pseudobulbar affect (Patient 2). They had a refractory progressive course and were diagnosed with adenocarcinoma (Patient 1: lung, Patient 2: gallbladder). Sera from adenocarcinoma patients without PNS (n=30) tested for SKOR2-IgG were negative.DiscussionSKOR2 IgG represents a novel biomarker for PNS associated with adenocarcinoma. Identification of additional SKOR2 IgG-positive cases will help categorize the associated neurological phenotype and the risk of underlying malignancy

    Modelling of the Spectral Energy Distribution of Fornax A : Leptonic and Hadronic Production of High Energy Emission from the Radio Lobes

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2014 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.We present new low-frequency observations of the nearby radio galaxy Fornax A at 154 MHz with the Murchison Widefield Array, microwave flux-density measurements obtained from WMAP and Planck data, and gamma-ray flux densities obtained from Fermi data. We also compile a comprehensive list of previously published images and flux-density measurements at radio, microwave and X-ray energies. A detailed analysis of the spectrum of Fornax A between 154 MHz and 1510 MHz reveals that both radio lobes have a similar spatially-averaged spectral index, and that there exists a steep-spectrum bridge of diffuse emission between the lobes. Taking the spectral index of both lobes to be the same, we model the spectral energy distribution of Fornax A across an energy range spanning eighteen orders of magnitude, to investigate the origin of the X-ray and gamma-ray emission. A standard leptonic model for the production of both the X-rays and gamma-rays by inverse-Compton scattering does not fit the multi-wavelength observations. Our results best support a scenario where the X-rays are produced by inverse-Compton scattering and the gamma-rays are produced primarily by hadronic processes confined to the filamentary structures of the Fornax A lobes.Peer reviewe

    Functional proteomics can define prognosis and predict pathologic complete response in patients with breast cancer

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>To determine whether functional proteomics improves breast cancer classification and prognostication and can predict pathological complete response (pCR) in patients receiving neoadjuvant taxane and anthracycline-taxane-based systemic therapy (NST).</p> <p>Methods</p> <p>Reverse phase protein array (RPPA) using 146 antibodies to proteins relevant to breast cancer was applied to three independent tumor sets. Supervised clustering to identify subgroups and prognosis in surgical excision specimens from a training set (n = 712) was validated on a test set (n = 168) in two cohorts of patients with primary breast cancer. A score was constructed using ordinal logistic regression to quantify the probability of recurrence in the training set and tested in the test set. The score was then evaluated on 132 FNA biopsies of patients treated with NST to determine ability to predict pCR.</p> <p>Results</p> <p>Six breast cancer subgroups were identified by a 10-protein biomarker panel in the 712 tumor training set. They were associated with different recurrence-free survival (RFS) (log-rank p = 8.8 E-10). The structure and ability of the six subgroups to predict RFS was confirmed in the test set (log-rank p = 0.0013). A prognosis score constructed using the 10 proteins in the training set was associated with RFS in both training and test sets (p = 3.2E-13, for test set). There was a significant association between the prognostic score and likelihood of pCR to NST in the FNA set (p = 0.0021).</p> <p>Conclusion</p> <p>We developed a 10-protein biomarker panel that classifies breast cancer into prognostic groups that may have potential utility in the management of patients who receive anthracycline-taxane-based NST.</p

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figuresMajor update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figuresThe preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess

    The 2010 Interim Report of the Long-Baseline Neutrino Experiment Collaboration Physics Working Groups

    Get PDF
    Corresponding author R.J.Wilson ([email protected]); 113 pages, 90 figuresCorresponding author R.J.Wilson ([email protected]); 113 pages, 90 figuresIn early 2010, the Long-Baseline Neutrino Experiment (LBNE) science collaboration initiated a study to investigate the physics potential of the experiment with a broad set of different beam, near- and far-detector configurations. Nine initial topics were identified as scientific areas that motivate construction of a long-baseline neutrino experiment with a very large far detector. We summarize the scientific justification for each topic and the estimated performance for a set of far detector reference configurations. We report also on a study of optimized beam parameters and the physics capability of proposed Near Detector configurations. This document was presented to the collaboration in fall 2010 and updated with minor modifications in early 2011
    corecore