34 research outputs found
Recommended from our members
Automated particulate sampler field test model operations guide
The Automated Particulate Sampler Field Test Model Operations Guide is a collection of documents which provides a complete picture of the Automated Particulate Sampler (APS) and the Field Test in which it was evaluated. The Pacific Northwest National Laboratory (PNNL) Automated Particulate Sampler was developed for the purpose of radionuclide particulate monitoring for use under the Comprehensive Test Ban Treaty (CTBT). Its design was directed by anticipated requirements of small size, low power consumption, low noise level, fully automatic operation, and most predominantly the sensitivity requirements of the Conference on Disarmament Working Paper 224 (CDWP224). This guide is intended to serve as both a reference document for the APS and to provide detailed instructions on how to operate the sampler. This document provides a complete description of the APS Field Test Model and all the activity related to its evaluation and progression
Real-time digital signal processor implementation of self-calibrating pulse-shape discriminator for high purity germanium
Pulse-shape analysis of the ionization signals from germanium gamma-ray
spectrometers is a method for obtaining information that can characterize an
event beyond just the total energy deposited in the crystal. However, as
typically employed, this method is data-intensive requiring the digitization,
transfer, and recording of electronic signals from the spectrometer. A hardware
realization of a real-time digital signal processor for implementing a
parametric pulse shape is presented. Specifically, a previously developed
method for distinguishing between single-site and multi-site gamma-ray
interactions is demonstrated in an on-line digital signal processor, compared
with the original off-line pulse-shape analysis routine, and shown to have no
significant difference. Reduction of the amount of the recorded information per
event is shown to translate into higher duty-cycle data acquisition rates while
retaining the benefits of additional event characterization from pulse-shape
analysis.Comment: Accepted by NIM
Present status of IGEX dark matter search at Canfranc Underground Laboratory
One IGEX 76Ge double-beta decay detector is currently operating in the
Canfranc Underground Laboratory in a search for dark matter WIMPs, through the
Ge nuclear recoil produced by the WIMP elastic scattering. A new exclusion plot
has been derived for WIMP-nucleon spin-independent interactions. To obtain this
result, 40 days of data from the IGEX detector (energy threshold 4 keV),
recently collected, have been analyzed. These data improve the exclusion limits
derived from all the other ionization germanium detectors in the mass region
from 20 GeV to 200 GeV, where a WIMP supposedly responsible for the annual
modulation effect reported by the DAMA experiment would be located. The new
IGEX exclusion contour enters, by the first time, the DAMA region by using only
raw data, with no background discrimination, and excludes its upper left part.
It is also shown that with a moderate improvement of the detector performances,
the DAMA region could be fully explored.Comment: 3 pages, 3 figures, talk delivered at the 7th International Workshop
on Topics in Astroparticle and Underground Physics (TAUP 2001), September
2001, Laboratori Nazionali del Gran Sasso, Italy (to appear in the Conference
Proceedings, Nucl. Phys. B (Proc. Suppl.)
Improved constraints on WIMPs from the International Germanium Experiment IGEX
One IGEX 76Ge double-beta decay detector is currently operating in the
Canfranc Underground Laboratory in a search for dark matter WIMPs, through the
Ge nuclear recoil produced by the WIMP elastic scattering. A new exclusion
plot, has been derived for WIMP-nucleon spin-independent interactions. To
obtain this result, 40 days of data from the IGEX detector (energy threshold E
\~ 4 keV), recently collected, have been analyzed. These data improve the
exclusion limits derived from all the other ionization germanium detectors in
the mass region from 20 GeV to 200 GeV, where a WIMP supposedly responsible for
the annual modulation effect reported by the DAMA experiment would be located.
The new IGEX exclusion contour enters, by the first time, the DAMA region by
using only raw data, with no background discrimination, and excludes its upper
left part. It is also shown that with a moderate improvement of the detector
performances, the DAMA region could be fully explored.Comment: 14 pages, 8 figures, submitted to Physics Letters B (revised version
after referee's comments, some figures added
New constraints on WIMPs from the Canfranc IGEX dark matter search
The IGEX Collaboration enriched 76Ge double-beta decay detectors are
currently operating in the Canfranc Underground Laboratory with an overburden
of 2450 m.w.e. A recent upgrade has made it possible to use them in a search
for WIMPs. A new exclusion plot has been derived for WIMP-nucleon
spin-independent interaction. To obtain this result, 30 days of data from one
IGEX detector, which has an energy threshold of ~4 keV, have been considered.
These data improve the exclusion limits derived from other germanium diode
experiments in the ~50 GeV DAMA region, and show that with a moderate
improvement of the background below 10 keV, the DAMA region may be tested with
an additional 1 kg-year of exposure.Comment: 7 pages, 2 figures, submitted to Physics Letter
Pulse Shape Discrimination in the IGEX Experiment
The IGEX experiment has been operating enriched germanium detectors in the
Canfranc Underground Laboratory (Spain) in a search for the neutrinoless double
decay of 76Ge. The implementation of Pulse Shape Discrimination techniques to
reduce the radioactive background is described in detail. This analysis has
been applied to a fraction of the IGEX data, leading to a rejection of ~60 % of
their background, in the region of interest (from 2 to 2.5 MeV), down to ~0.09
c/(keV kg y).Comment: 18 pages, 10 figure
Experimental Search for Solar Axions
A new technique has been used to search for solar axions using a single crystal germanium detector. It exploits the coherent conversion of axions into photons when their angle of incidence satisfies a Bragg condition with a crystalline plane. The analysis of approximately 1.94 kg.yr of data from the 1-kg DEMOS detector in Sierra Grande, Argentina, yields a new laboratory bound on axion-photon coupling of g_{a,\gamma\gamma}<2.7\times 10^{-9} GeV^{-1} independent of axion mass up to \sim 1 keV
Search for an annual modulation of dark-matter signals with a germanium spectrometer at the Sierra Grande Laboratory
Data collected during three years with a germanium spectrometer at the Sierra
Grande underground laboratory have been analyzed for distinctive features of
annual modulation of the signal induced by WIMP dark matter candidates. The
main motivation for this analysis was the recent suggestion by the DAMA/NaI
Collaboration that a yearly modulation signal could not be rejected at the 90%
confidence level when analyzing data obtained with a high-mass low-background
scintillator detector. We performed two different analyses of the data: First,
the statistical distribution of modulation-significance variables (expected
from an experiment running under the conditions of Sierra Grande) was compared
with the same variables obtained from the data. Second, the data were analyzed
in energy bins as an independent check of the first result and to allow for the
possibility of a crossover in the expected signal. In both cases no
statistically significant deviation from the null result was found, which could
support the hypothesis that the data contain a modulated component. A plot is
also presented to enable the comparison of these results to those of the DAMA
collaboration.Comment: New version accepted by Astroparticle Physics. Changes suggested by
the referee about the theoretical prediction of rates are included.
Conclusions remain unaffected. 14 pages, LaTeX, 7 figures. Uses epsfig macr
A Decommissioned LHC Model Magnet as an Axion Telescope
The 8.4 Tesla, 10 m long transverse magnetic field of a twin aperture LHC
bending magnet can be utilized as a macroscopic coherent solar axion-to-photon
converter. Numerical calculations show that the integrated time of alignment
with the Sun would be 33 days per year with the magnet on a tracking table
capable of in the vertical direction and in the horizontal
direction. The existing lower bound on the axion-to-photon coupling constant
can be improved by a factor between 50 and 100 in 3 years, i.e.,
for axion masses
1 eV. This value falls within the existing open axion mass window.
The same set-up can simultaneously search for low- and high-energy celestial
axions, or axion-like particles, scanning the sky as the Earth rotates and
orbits the Sun.Comment: Final version, accepted for publication in Nucl. Instr. Meth. A. More
information can be found at http://wwwinfo.cern.ch/~collar/SATAN/alvaro.htm
Astroparticle Physics with a Customized Low-Background Broad Energy Germanium Detector
The MAJORANA Collaboration is building the MAJORANA DEMONSTRATOR, a 60 kg
array of high purity germanium detectors housed in an ultra-low background
shield at the Sanford Underground Laboratory in Lead, SD. The MAJORANA
DEMONSTRATOR will search for neutrinoless double-beta decay of 76Ge while
demonstrating the feasibility of a tonne-scale experiment. It may also carry
out a dark matter search in the 1-10 GeV/c^2 mass range. We have found that
customized Broad Energy Germanium (BEGe) detectors produced by Canberra have
several desirable features for a neutrinoless double-beta decay experiment,
including low electronic noise, excellent pulse shape analysis capabilities,
and simple fabrication. We have deployed a customized BEGe, the MAJORANA
Low-Background BEGe at Kimballton (MALBEK), in a low-background cryostat and
shield at the Kimballton Underground Research Facility in Virginia. This paper
will focus on the detector characteristics and measurements that can be
performed with such a radiation detector in a low-background environment.Comment: Submitted to NIMA Proceedings, SORMA XII. 9 pages, 4 figure