41 research outputs found

    Sub-espécies de mamona.

    Get PDF
    bitstream/item/17948/2/DOC230.pd

    Reproducibility of fetal heart volume by 3D-sonography using the XI VOCAL method

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To assess the reliability of fetal heart volume measurement by three-dimensional sonography (3DUS) using the eXtended Imaging Virtual Organ Computer-aided AnaLysis (XI VOCAL) method.</p> <p>Methods</p> <p>This reliability study enrolled 30 pregnant women with singleton healthy pregnancies between 19 and 34 weeks of gestation. All volume acquirements were performed with a convex volumetric transducer (C3-7ED) coupled to an Accuvix XQ sonography device (Medison, Korea). The XI VOCAL 10 planes was the method of choice for volumetric measurement. 3D datasets were analyzed by two observers (EQSB and HJFM); fetal heart volume was measured twice by the first and once by the second observer to calculate intra and interobserver reproducibility. Statistical analysis used pareated Student's t test (p) and calculated Intraclass correlation coefficients (ICC). Bland-Altman plots were also constructed.</p> <p>Results</p> <p>We observed an excellent intra- and interobserver reliability for fetal cardiac volume assessed by XI VOCAL. For the intraobserver the ICC was 0.998 (95% CI: 0.997; 0.999), with mean of differences of 0.12 cm<sup>3 </sup>(95% limits of agreement: -0.84; +0.84; p = 0.130). For interobserver the ICC was 0.899 (95%CI: 0.996; 0.998), mean of differences 0.05 cm<sup>3 </sup>(95% limits of agreement: -0.84; +0.84; p = 0.175).</p> <p>Conclusion</p> <p>Fetal cardiac volume assessed by 3DUS using XI VOCAL method is highly reproducible between 19 to 34 gestational weeks.</p

    Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests

    Get PDF
    The seasonal climate drivers of the carbon cycle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combination of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measurements and 35 litter productivity measurements), their associate canopy photosynthetic capacity (enhanced vegetation index, EVI) and climate, we ask how carbon assimilation and aboveground allocation are related to climate seasonality in tropical forests and how they interact in the seasonal carbon cycle. We found that canopy photosynthetic capacity seasonality responds positively to precipitation when rainfall is < 2000 mm.yr−1 (water-limited forests) and to radiation otherwise (light-limited forests); on the other hand, independent of climate limitations, wood productivity and litterfall are driven by seasonal variation in precipitation and evapotranspiration respectively. Consequently, light-limited forests present an asynchronism between canopy photosynthetic capacity and wood productivity. Precipitation first-order control indicates an overall decrease in tropical forest productivity in a drier climate.Peer reviewe
    corecore