105 research outputs found

    A Network Analysis for Environmental Assessment in Wine Supply Chain

    Get PDF
    In the agri-food sector, the Life Cycle Assessment method (LCA) is used to evaluate the environmental impact of a product. Within agri-food products, wine is among the most analysed products, not only for its economic importance but also for the environmental impact of its activity. The paper aims to identify the main trends in the wine sector revolving around environmental evaluation using the LCA method in the academic literature. The aim is to investigate the literature on life cycle assessment analysis of grape and wine production through the systematic grouping of papers into clusters of research. So, the purpose is to discuss the gaps and insights identified by the study in order to aid in the development of a comprehensive state of the art on the topic. Scopus and Web of Science were used to search all articles following a clear and replicable protocol. The results (keywords) were subjected to co-occurrence analysis using VOSviewer, after which the articles were further analysed. Through a bibliographic coupling analysis, the research results were grouped through a network analysis that allowed identifying the research trends on the topic. Three clusters were identified containing the main lines of research on the subject. The results show that nowadays the literature is focusing on concerns related to climate change and consumer awareness on sustainability issues and certifications as well as environmental impacts generated mainly in the production phase in the vineyard. The research results are of interest for future research on LCA analysis in the wine sector in order to contribute to the discussion on the current model in the global wine sector

    (15)N NMR spectroscopy unambiguously establishes the coordination mode of the diimine linker 2-(2'-pyridyl)pyrimidine-4-carboxylic acid (cppH) in Ru(II) complexes

    Get PDF
    We investigated the reactivity of three Ru(II) precursors - trans,cis,cis-[RuCl2(CO)2(dmso-O)2], cis,fac-[RuCl2(dmso-O)(dmso-S)3], and trans-[RuCl2(dmso-S)4] - towards the diimine linker 2-(2'-pyridyl)pyrimidine-4-carboxylic acid (cppH) or its parent compound 4-methyl-2-(2'-pyridyl)pyrimidine ligand (mpp), in which a methyl group replaces the carboxylic group on the pyrimidine ring. In principle, both cppH and mpp can originate linkage isomers, depending on how the pyrimidine ring binds to ruthenium through the nitrogen atom ortho (N(o)) or para (N(p)) to the group in position 4. The principal aim of this work was to establish a spectroscopic fingerprint for distinguishing the coordination mode of cppH/mpp also in the absence of an X-ray structural characterization. By virtue of the new complexes described here, together with the others previously reported by us, we successfully recorded (1)H,(15)N-HMBC NMR spectra at natural abundance of the (15)N isotope on a consistent number of fully characterized Ru(ii)-cppH/mpp compounds, most of them being stereoisomers and/or linkage isomers. Thus, we found that (15)N NMR chemical shifts unambiguously establish the binding mode of cppH and mpp - either through N(o) or N(p) - and can be conveniently applied also in the absence of the X-ray structure. In fact, coordination of cppH to Ru(ii) induces a marked upfield shift for the resonance of the N atoms directly bound to the metal, with coordination induced shifts (CIS) ranging from ca. -45 to -75 ppm, depending on the complex, whereas the unbound N atom resonates at a frequency similar to that of the free ligand. Similar results were found for the complexes of mpp. This work confirmed our previous finding that cppH has no binding preference, whereas mpp binds exclusively through N(p). Interestingly, the two cppH linkage isomers trans,cis-[RuCl2(CO)2(cppH-\u3baN(p))] () and trans,cis-[RuCl2(CO)2(cppH-\u3baN(o))] () were easily obtained in pure form by exploiting their different solubility properties

    Antidiabetic thiazolidinediones induce ductal differentiation but not apoptosis in pancreatic cancer cells

    Get PDF
    AIM: Thiazolidinediones (TZD) are a new class of oral antidiabetic drugs that have been shown to inhibit growth of same epithelial cancer cells. Although TZD were found to be ligands for peroxisome proliferator-activated receptor gamma (PPARgamma), the mechanism by which TZD exert their anticancer effect is presently unclear. In this study, we analyzed the mechanism by which TZD inhibit growth of human pancreatic carcinoma cell lines in order to evaluate the potential therapeutic use of these drugs in pancreatic adenocarcinoma. METHODS: The effects of TZD in pancreatic cancer cells were assessed in anchorage-independent growth assay. Expression of PPARgamma was measured by reverse-transcription polymerase chain reaction and confirmed by Western blot analysis. PPARgamma activity was evaluated by transient reporter gene assay. Flow cytometry and DNA fragmentation assay were used to determine the effect of TZD on cell cycle progression and apoptosis respectively. The effect of TZD on ductal differentiation markers was performed by Western blot. RESULTS: Exposure to TZD inhibited colony formation in a PPARgamma-dependent manner. Growth inhibition was linked to G1 phase cell cycle arrest through induction of the ductal differentiation program without any increase of the apoptotic rate. CONCLUSION: TZD treatment in pancr

    Role of calcium desensitization in the treatment of myocardial dysfunction after deep hypothermic circulatory arrest

    Get PDF
    Abstract Introduction Rewarming from deep hypothermic circulatory arrest (DHCA) produces calcium desensitization by troponin I (cTnI) phosphorylation which results in myocardial dysfunction. This study investigated the acute overall hemodynamic and metabolic effects of epinephrine and levosimendan, a calcium sensitizer, on myocardial function after rewarming from DHCA. Methods Forty male Wistar rats (400 to 500 g) underwent cardiopulmonary bypass (CPB) through central cannulation and were cooled to a core temperature of 13°C to 15°C within 30 minutes. After DHCA (20 minutes) and CPB-assisted rewarming (60 minutes) rats were randomly assigned to 60 minute intravenous infusion with levosimendan (0.2 μg/kg/min; n = 15), epinephrine (0.1 μg/kg/min; n = 15) or saline (control; n = 10). Systolic and diastolic functions were evaluated at different preloads with a conductance catheter. Results The slope of left ventricular end-systolic pressure volume relationship (Ees) and preload recruitable stroke work (PRSW) recovered significantly better with levosimendan compared to epinephrine (Ees: 85 ± 9% vs 51 ± 11%, P\u3c0.003 and PRSW: 78 ± 5% vs 48 ± 8%, P\u3c0.005; baseline: 100%). Levosimendan but not epinephrine reduced left ventricular stiffness shown by the end-diastolic pressure-volume relationship and improved ventricular relaxation (Tau). Levosimendan preserved ATP myocardial content as well as energy charge and reduced plasma lactate concentrations. In normothermia experiments epinephrine in contrast to Levosimendan increased cTnI phosphorylation 3.5-fold. After rewarming from DHCA, cTnI phosphorylation increased 4.5-fold in the saline and epinephrine group compared to normothermia but remained unchanged with levosimendan. Conclusions Levosimendan due to prevention of calcium desensitization by cTnI phosphorylation is more effective than epinephrine for treatment of myocardial dysfunction after rewarming from DHCA

    Biomimetic poly(amidoamine) hydrogels as synthetic materials for cell culture

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Poly(amidoamine)s (PAAs) are synthetic polymers endowed with many biologically interesting properties, being highly biocompatible, non toxic and biodegradable. Hydrogels based on PAAs can be easily modified during the synthesis by the introduction of functional co-monomers. Aim of this work is the development and testing of novel amphoteric nanosized poly(amidoamine) hydrogel film incorporating 4-aminobutylguanidine (agmatine) moieties to create RGD-mimicking repeating units for promoting cell adhesion.</p> <p>Results</p> <p>A systematic comparative study of the response of an epithelial cell line was performed on hydrogels with agmatine and on non-functionalized amphoteric poly(amidoamine) hydrogels and tissue culture plastic substrates. The cell adhesion on the agmatine containing substrates was comparable to that on plastic substrates and significantly enhanced with respect to the non-functionalized controls. Interestingly, spreading and proliferation on the functionalized supports are slower than on plastic exhibiting the possibility of an easier control of the cell growth kinetics. In order to favor the handling of the samples, a procedure for the production of bi-layered constructs was also developed by means the deposition via spin coating of a thin layer of hydrogel on a pre-treated cover slip.</p> <p>Conclusion</p> <p>The obtained results reveal that PAAs hydrogels can be profitably functionalized and, in general, undergo physical and chemical modifications to meet specific requirements. In particular the incorporation of agmatine warrants good potential in the field of cell culturing and the development of supported functionalized hydrogels on cover glass are very promising substrates for applications in cell screening devices.</p

    The mouse model is suitable for the study of viral factors governing transmission and pathogenesis of highly pathogenic avian influenza (HPAI) viruses in mammals

    Get PDF
    Highly pathogenic avian influenza (HPAI) viruses of the H5 and H7 subtype pose a major public health threat due to their capacity to cross the species barrier and infect mammals, for example dogs, cats and humans. In the present study we tested the capacity of selected H7 and H5 HPAI viruses to infect and to be transmitted from infected BALB/c mice to contact sentinels. Previous experiments have shown that viruses belonging to both H5 and H7 subtypes replicate in the respiratory tract and central nervous system of experimentally infected mice. In this study we show that selected H7N1 and H5N1 HPAI viruses can be transmitted from mouse-to-mouse by direct contact, and that in experimentally infected animals they exhibit a different pattern of replication and transmission. Our results can be considered as a starting point for transmission experiments involving other influenza A viruses with α 2-3 receptor affinity in order to better understand the viral factors influencing transmissibility of these viruses in selected mammalian species

    The orphan nuclear receptor COUP-TFII coordinates hypoxia-independent proangiogenic responses in hepatic stellate cells

    Get PDF
    BACKGROUND & AIMS: Hepatic stellate cell (HSC) transdifferentiation into collagen-producing myofibroblasts is a key event in hepatic fibrogenesis, but the transcriptional network that controls the acquisition of the activated phenotype is still poorly understood. In this study, we explored whether the nuclear receptor chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) is involved in HSC activation and in the multifunctional role of these cells during the response to liver injury. METHODS: COUP-TFII expression was evaluated in normal and cirrhotic livers by immunohistochemistry and Western blot. The role of COUP-TFII in HSC was assessed by gain and loss of function transfection experiments and by generation of mice with COUP-TFII deletion in HSC. Molecular changes were determined by gene expression microarray and RT-qPCR. RESULTS: We showed that COUP-TFII is highly expressed in human fibrotic liver and in mouse models of hepatic injury. COUP-TFII expression rapidly increased upon HSC activation and it was associated with the regulation of genes involved in cell motility, proliferation and angiogenesis. Inactivation of COUP-TFII impairs proliferation and invasiveness in activated HSC and COUP-TFII deletion in mice abrogate HSC activation and angiogenesis. Finally, co-culture experiments with HSC and liver sinusoidal endothelial cells (SEC) showed that COUP-TFII expression in HSC influenced SEC migration and tubulogenesis via a hypoxia-independent and nuclear factor κB-dependent mechanism. CONCLUSION: This study elucidates a novel transcriptional pathway in HSC that is involved in the acquisition of the proangiogenic phenotype and regulates the paracrine signals between HSC and SEC during hepatic wound healing. LAY SUMMARY: In this study, we identified an important regulator of HSC pathobiology. We showed that the orphan receptor COUP-TFII is an important player in hepatic neoangiogenesis. COUP-TFII expression in HSC controls the crosstalk between HSC and endothelial cells coordinating vascular remodelling during liver injury. TRANSCRIPT PROFILING: ArrayExpress accession E-MTAB-1795

    Bifidobacterium bifidum PRL2010 alleviates intestinal ischemia/reperfusion injury

    Get PDF
    Mesenteric ischemia/reperfusion is a clinical emergency with high morbidity and mortality due to the transient reduction of blood supply to the bowel. In recent years, the critical contribution of gut microbiome to human health and proper gastrointestinal functions has gradually emerged. In the current study, we investigated the protective effects of five days supplementation with Bifidobacterium bifidum PRL2010 in a murine model of gut ischemia/reperfusion. Our findings indicate that animals pretreated with B. bifidum PRL2010 showed lower neutrophil recruitment in the lungs, remarkably reduced bacterial translocation and decreased transcription levels of TNFalpha and IL-10 both in liver and kidneys, at the same time increasing those of IL-12 in kidneys. Inhibiting the adhesion of pathogenic bacteria and boosting host innate immunity responses are among the possible protective mechanisms enacted by the probiotic. These results demonstrate that short-period treatment with B. bifidum PRL2010 is a potential strategy to dampen remote organ injury due to mesenteric ischemia/reperfusion

    Effects induced by particles derived from two anthropogenic sources on respiratory, cardiovascular and central nervous systems

    Get PDF
    Air pollution represents a well-known environmental problem related to public health. Particulate matter (PM) is a heterogeneous mixture of chemicals, metals and soils. Its adverse effects have been correlated with particles size, being smaller particles more likely to cause a worst damage, so their study deserves more attention. Ultrafine particles (UFPs, dae < 100 nm) are short-lived particles dispersed in the environment. In Lombardy, diesel combustion and solid biomass burning are the most relevant contributors to primary UFPs emissions (15-30 nm in diameter). Toxicological studies, mainly in vitro, indicate specific effects for particles of different origin but comparative in vivo studies are scarce. PM exposure has been primarily associated to pulmonary and cardiovascular diseases through oxidative stress and inflammatory response, but recently it has been postulated that PM exposure could also be an important risk factor for neurotoxicity and could have a role in neurodegenerative diseases. In this study we analysed in BALB/c mice the effect of single and repeated intratracheal instillation of diesel (DEP) and biomass (BC) particles on respiratory, cardiovascular and central nervous systems, comparing the two different UFPs sources. The study was performed at biochemical and histopathological level. Different pro-inflammatory, cytotoxic, pro-coagulant and oxidative stress markers were measured. For the histopathological evaluation, sections of lung, heart and different parts of the central nervous system (CNS) were examined at light microscope, using standard staining tecniques and immunohistochemical methods. Inflammation was also monitored in living mice following BC or DEP intratracheal repeated administration using the FMT 1500 fluorescence tomography imaging system and the MMPSense 750 Fast probe.  Our results indicate that even a single instillation of both the sources of UFPs induces a wide range of biochemical changes in the respiratory and cardiovascular systems, then confirmed by repeated instillation. In the CNS similar modifications were observed, although these were much more evident after repeated instillations. Histological examination demonstrated the presence of macrophages containing particles in the lungs after UFPs single and, more abundantly, repeated administration. However, significant changes were not observed in sections of heart and CNS. DEP was more effective in inducing oxidative stress and inflammation compared to BC
    corecore